ML参数及ResNet中Pre-activation和post-activation的区别

本文探讨了PyTorch中Dataloader的数据加载机制,介绍了batch_size、epoch和shuffle的概念,并比较了Pre-activation与Post-activation在ResNet中的区别。同时,讨论了max_seq_len和tokenizer的作用,以及如何使用tqdm库提升代码可视化。
摘要由CSDN通过智能技术生成

batch_size:多少个数据为一个批次进行梯度更新。

batch:以batch_size为单位,将数据集划分为多少个batch。batch=total size/batch_size

epoch:将整个数据集训练多少次。一般选择>1,因只输入网络一次不能很好的学习到特征。

shuffle:每个epoch是否乱序;

max_seq_len:tokenizer参数,若数据大于max_seq_len,直接截断;少于max_seq_len时,在输入网络时,会padding 0,进行数据的对齐

tqdm库:在电脑终端上显示进度,使代码进度可视化,用于for循环中。

辅助标记符[CLS]和[SEP]来表示句子的开始和分隔。

pytorch:数据读取Dataloader

(6条消息) pytorch - 数据读取机制中的Dataloader与Dataset_诗与远方-CSDN博客

ResNet中Pre-activation和Post-activation的区别

其中pre和post是对于卷积操作来说的, 对于1,2,3是先进行卷积,故为post-activation

4,5为pre-activation模式;

shortcut可以理解为跨层连接,为了减轻随着网络深度的增加,模型性能降低的问题。

下采样(downsampling)可以用于减少模型参数,如DPCNN中,选取步长为2,大小为3的下采样,可以是特征图数据量减少一半。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值