batch_size:多少个数据为一个批次进行梯度更新。
batch:以batch_size为单位,将数据集划分为多少个batch。batch=total size/batch_size
epoch:将整个数据集训练多少次。一般选择>1,因只输入网络一次不能很好的学习到特征。
shuffle:每个epoch是否乱序;
max_seq_len:tokenizer参数,若数据大于max_seq_len,直接截断;少于max_seq_len时,在输入网络时,会padding 0,进行数据的对齐
tqdm库:在电脑终端上显示进度,使代码进度可视化,用于for循环中。
辅助标记符[CLS]和[SEP]来表示句子的开始和分隔。
pytorch:数据读取Dataloader
(6条消息) pytorch - 数据读取机制中的Dataloader与Dataset_诗与远方-CSDN博客
ResNet中Pre-activation和Post-activation的区别
其中pre和post是对于卷积操作来说的, 对于1,2,3是先进行卷积,故为post-activation
4,5为pre-activation模式;
shortcut可以理解为跨层连接,为了减轻随着网络深度的增加,模型性能降低的问题。
下采样(downsampling)可以用于减少模型参数,如DPCNN中,选取步长为2,大小为3的下采样,可以是特征图数据量减少一半。