文章目录
写在前面
复习一下一些大学学习中常见的一些不等式,及其用法和证明思路。想深入了解的朋友可以看裴礼文老师所著《数学分析中的典型问题与方法》。
Jensen不等式
若
f
f
f为
[
a
,
b
]
[a,\,b]
[a,b]上的凸函数,则对任意
x
i
∈
[
a
,
b
]
x_i\in[a,\,b]
xi∈[a,b],
λ
i
>
0
(
i
=
1
,
2
,
⋯
,
n
)
\lambda_i>0\ (i=1,\,2,\,\cdots,\,n)
λi>0 (i=1,2,⋯,n),
∑
i
=
1
n
λ
i
=
1
\sum\limits_{i=1}^n\lambda_i=1
i=1∑nλi=1,有
f
(
∑
i
=
1
n
λ
i
x
i
)
⩽
∑
i
=
1
n
λ
i
f
(
x
i
)
.
f\left(\sum_{i=1}^n\lambda_ix_i\right)\leqslant\sum_{i=1}^n\lambda_if(x_i).
f(i=1∑nλixi)⩽i=1∑nλif(xi).
P.S. 在《数学分析(华东师大第四版)》一书中该不等式作为函数凸性定义的推广引入,这里使用该书中的定义。
证明思路
n
=
2
n=2
n=2时显然成立;
n
=
k
n=k
n=k时只需证明对任意
x
i
∈
[
a
,
b
]
x_i\in[a,\,b]
xi∈[a,b],
α
i
>
0
(
i
=
1
,
2
,
⋯
,
n
)
\alpha_i>0\ (i=1,\,2,\,\cdots,\,n)
αi>0 (i=1,2,⋯,n),
∑
i
=
1
n
α
i
=
1
\sum\limits_{i=1}^n\alpha_i=1
i=1∑nαi=1,有
f
(
∑
i
=
1
n
α
i
x
i
)
⩽
∑
i
=
1
n
α
i
f
(
x
i
)
.
f\left(\sum_{i=1}^n\alpha_ix_i\right)\leqslant\sum_{i=1}^n\alpha_if(x_i).
f(i=1∑nαixi)⩽i=1∑nαif(xi).
作代换,令
α
i
=
λ
i
1
−
λ
k
+
1
,
i
=
1
,
2
,
⋯
,
k
\alpha_i=\dfrac{\lambda_i}{1-\lambda_{k+1}},\,i=1,\,2,\,\cdots,\,k
αi=1−λk+1λi,i=1,2,⋯,k,则有
∑
i
=
1
n
α
i
=
1
\sum\limits_{i=1}^n\alpha_i=1
i=1∑nαi=1,利用数学归纳法即可证得。
根据这个不等式可以立刻推出下面的均值不等式以及后面的Young不等式。
均值不等式
对任意
n
n
n个实数
a
i
⩾
0
(
i
=
1
,
2
,
⋯
,
n
)
a_i\geqslant0(i=1,\,2,\,\cdots,\,n)
ai⩾0(i=1,2,⋯,n)恒有
a
1
a
2
⋯
a
n
n
⩽
a
1
+
a
2
+
⋯
+
a
n
n
\sqrt[n]{a_1a_2\cdots a_n}\leqslant\frac{a_1+a_2+\cdots+a_n}n
na1a2⋯an⩽na1+a2+⋯+an
上式可简记为几何平均值
⩽
\leqslant
⩽算术平均值,等号当且仅当
a
1
=
a
2
=
⋯
=
a
n
a_1=a_2=\cdots=a_n
a1=a2=⋯=an时成立。
应用
证明不等式。
例题1
设正值函数
f
(
x
)
f(x)
f(x)在
[
0
,
1
]
[0,\,1]
[0,1]上连续,证明
e
∫
0
1
ln
f
(
x
)
d
x
⩽
∫
0
1
f
(
x
)
d
x
.
\mathrm{e}^{ \int_0^1\ln f(x)\,\mathrm{d}x}\leqslant\int_0^1f(x)\,\mathrm{d}x.
e∫01lnf(x)dx⩽∫01f(x)dx.
证明:
将
[
0
,
1
]
[0,\,1]
[0,1]作
n
n
n等分,计算积分和
∫
0
1
f
(
x
)
d
x
=
lim
n
→
∞
1
n
∑
i
=
1
n
f
(
i
n
)
,
∫
0
1
ln
f
(
x
)
d
x
=
lim
n
→
∞
1
n
∑
i
=
1
n
ln
f
(
i
n
)
=
lim
n
→
∞
ln
[
∏
i
=
1
n
f
(
i
n
)
]
1
n
,
\begin{aligned} \int_0^1f(x)\,\mathrm{d}x &=\lim_{n\to\infty}\frac1n\sum_{i=1}^nf\left(\frac in\right),\\ \int_0^1\ln f(x)\,\mathrm{d}x &=\lim_{n\to\infty}\frac1n\sum_{i=1}^n\ln f\left(\frac in\right)=\lim_{n\to\infty}\ln\left[\prod_{i=1}^nf\left(\frac in\right)\right]^{\frac1n},\\ \end{aligned}
∫01f(x)dx∫01lnf(x)dx=n→∞limn1i=1∑nf(ni),=n→∞limn1i=1∑nlnf(ni)=n→∞limln[i=1∏nf(ni)]n1,
所以有
e
∫
0
1
ln
f
(
x
)
d
x
=
lim
n
→
∞
[
∏
i
=
1
n
f
(
i
n
)
]
1
n
⩽
lim
n
→
∞
1
n
∑
i
=
1
n
f
(
i
n
)
=
∫
0
1
f
(
x
)
d
x
.
\mathrm{\large e}^{\int_0^1\ln\!f(x)\,\mathrm{d}x}=\lim_{n\to\infty}\left[\prod_{i=1}^nf\left(\frac in\right)\right]^{\frac1n}\leqslant\lim_{n\to\infty}\frac1n\sum_{i=1}^nf\left(\frac in\right)=\int_0^1f(x)\,\mathrm{d}x.
e∫01lnf(x)dx=n→∞lim[i=1∏nf(ni)]n1⩽n→∞limn1i=1∑nf(ni)=∫01f(x)dx.
另证:
考虑原不等式两边取对数,有
∫
0
1
ln
f
(
x
)
d
x
⩽
ln
∫
0
1
f
(
x
)
d
x
,
{\int_0^1\ln f(x)\,\mathrm{d}x}\leqslant\ln\int_0^1f(x)\,\mathrm{d}x,
∫01lnf(x)dx⩽ln∫01f(x)dx,
令
∫
0
1
f
(
x
)
d
x
=
S
\int_0^1f(x)\mathrm{d}x=S
∫01f(x)dx=S,则上式等价于
∫
0
1
(
ln
f
(
x
)
−
ln
S
)
d
x
⩽
0
,
\int_0^1\big(\ln f(x)-\ln S\big)\mathrm{d}x\leqslant0,
∫01(lnf(x)−lnS)dx⩽0,
(由于定积分为一常数,所以显然可以将其从0到1进行积分,而其值保持不变)
上式进行变换可得到:
∫
0
1
(
ln
f
(
x
)
−
ln
S
)
d
x
=
∫
0
1
ln
f
(
x
)
S
d
x
=
∫
0
1
[
1
+
(
ln
f
(
x
)
S
−
1
)
]
d
x
⩽
∫
0
1
(
f
(
x
)
S
−
1
)
d
x
[
利用不等式
ln
(
1
+
x
)
<
x
(
x
>
−
1
时
)
得
到
]
=
1
S
∫
0
1
f
(
x
)
d
x
−
1
=
0
□
\begin{aligned} \int_0^1\big(\ln f(x)-\ln S\big)\mathrm{d}x&=\int_0^1\ln\frac{f(x)}S\mathrm{d}x\\ &=\int_0^1\left[1+\left(\ln\frac{f(x)}S-1\right)\right]\mathrm{d}x\\ &\leqslant\int_0^1\left(\frac{f(x)}S-1\right)\mathrm{d}x\\ &[\text{利用不等式}\ln(1+x)<x(x>-1\text{时})得到]\\ &=\frac1S\int_0^1f(x)\mathrm{d}x-1=0\qquad\qquad\qquad\qquad\qquad\qquad\quad\Box \end{aligned}
∫01(lnf(x)−lnS)dx=∫01lnSf(x)dx=∫01[1+(lnSf(x)−1)]dx⩽∫01(Sf(x)−1)dx[利用不等式ln(1+x)<x(x>−1时)得到]=S1∫01f(x)dx−1=0□
Cauchy不等式
设
a
i
,
b
i
,
(
i
=
1
,
2
,
⋯
,
n
)
a_i,\,b_i,\,(i=1,\,2,\,\cdots,\,n)
ai,bi,(i=1,2,⋯,n)为任意实数,则有
(
∑
i
=
1
n
a
i
b
i
)
2
⩽
∑
i
=
1
n
a
i
2
⋅
∑
i
=
1
n
b
i
2
,
\left(\sum_{i=1}^na_ib_i\right)^2\leqslant\sum_{i=1}^na_i^2\cdot\sum_{i=1}^nb_i^2,
(i=1∑naibi)2⩽i=1∑nai2⋅i=1∑nbi2,
等号当且仅当
a
i
a_i
ai与
b
i
b_i
bi成比例时成立。
证明思路
方法一
构造函数,利用判别式(常用)。
0
⩽
∑
i
=
1
n
(
a
i
x
+
b
i
)
2
=
(
∑
i
=
1
n
a
i
2
)
x
2
+
2
(
∑
i
=
1
n
a
i
b
i
)
x
+
∑
i
=
1
n
b
i
2
,
0\leqslant\sum_{i=1}^n(a_ix+b_i)^2=\left(\sum_{i=1}^na_i^2\right)x^2+2\left(\sum_{i=1}^na_ib_i\right)x+\sum_{i=1}^nb_i^2,
0⩽i=1∑n(aix+bi)2=(i=1∑nai2)x2+2(i=1∑naibi)x+i=1∑nbi2,
关于
x
x
x的二次三项式保持非负,所以判别式
(
∑
i
=
1
n
a
i
b
i
)
2
−
∑
i
=
1
n
a
i
2
⋅
∑
i
=
1
n
b
i
2
⩽
0.
\left(\sum_{i=1}^na_ib_i\right)^2-\sum_{i=1}^na_i^2\cdot\sum_{i=1}^nb_i^2\leqslant0.
(i=1∑naibi)2−i=1∑nai2⋅i=1∑nbi2⩽0.
方法二
配方。
方法三
二次型的性质。讨论关于
x
,
y
x,\,y
x,y的二次型
∑
i
=
1
n
(
a
i
x
+
b
i
y
)
2
\sum\limits_{i=1}^n(a_ix+b_iy)^2
i=1∑n(aix+biy)2,
0
⩽
∑
i
=
1
n
(
a
i
x
+
b
i
y
)
2
=
(
∑
i
=
1
n
a
i
2
)
x
2
+
2
(
∑
i
=
1
n
a
i
b
i
)
x
y
+
(
∑
i
=
1
n
b
i
2
)
y
2
,
0\leqslant\sum\limits_{i=1}^n(a_ix+b_iy)^2=\left(\sum_{i=1}^na_i^2\right)x^2+2\left(\sum_{i=1}^na_ib_i\right)xy+\left(\sum_{i=1}^nb_i^2\right)y^2,
0⩽i=1∑n(aix+biy)2=(i=1∑nai2)x2+2(i=1∑naibi)xy+(i=1∑nbi2)y2,
即此二次型非负定,所以有
∣
∑
i
=
1
n
a
i
2
∑
i
=
1
n
a
i
b
i
∑
i
=
1
n
a
i
b
i
∑
i
=
1
n
b
i
2
∣
⩾
0
,
\begin{vmatrix} \sum\limits_{i=1}^na_i^2&\sum\limits_{i=1}^na_ib_i\\ \sum\limits_{i=1}^na_ib_i&\sum\limits_{i=1}^nb_i^2 \end{vmatrix}\geqslant0,
∣∣∣∣∣∣∣i=1∑nai2i=1∑naibii=1∑naibii=1∑nbi2∣∣∣∣∣∣∣⩾0,
证毕。
根据此证明,可以推广Cauchy不等式为
det
(
∑
i
=
1
n
a
i
k
a
i
j
)
⩾
0
,
\det\left(\sum_{i=1}^na_{ik}a_{ij}\right)\geqslant0,
det(i=1∑naikaij)⩾0,
等号成立当且仅当
(
a
11
,
a
21
,
⋯
,
a
n
1
)
,
⋯
,
(
a
1
m
,
a
2
m
,
⋯
,
a
n
m
)
(a_{11},\,a_{21},\,\cdots,\,a_{n1}),\,\cdots,\,(a_{1m},\,a_{2m},\,\cdots,\,a_{nm})
(a11,a21,⋯,an1),⋯,(a1m,a2m,⋯,anm)线性相关时成立,即:存在不全为零的一组常数
x
1
,
⋯
,
x
m
x_1,\,\cdots,\,x_m
x1,⋯,xm使得
a
i
1
x
1
+
a
i
2
x
2
+
⋯
+
a
i
m
x
m
=
0
(
i
=
1
,
2
,
⋯
,
n
)
.
a_{i1}x_1+a_{i2}x_2+\cdots+a_{im}x_m=0\quad(i=1,\,2,\,\cdots,\,n).
ai1x1+ai2x2+⋯+aimxm=0(i=1,2,⋯,n).
Schwartz不等式
即Cauchy不等式的积分形式。
若
f
(
x
)
,
g
(
x
)
f(x),\,g(x)
f(x),g(x)在
[
a
,
b
]
[a,\,b]
[a,b]上可积,则
(
∫
a
b
f
(
x
)
g
(
x
)
d
x
)
2
⩽
∫
a
b
f
2
(
x
)
d
x
∫
a
b
g
2
(
x
)
d
x
\left(\int_a^bf(x)g(x)\,\mathrm{d}x\right)^2\leqslant\int_a^bf^2(x)\,\mathrm{d}x\!\int_a^bg^2(x)\,\mathrm{d}x
(∫abf(x)g(x)dx)2⩽∫abf2(x)dx∫abg2(x)dx
若
f
(
x
)
,
g
(
x
)
f(x),\,g(x)
f(x),g(x)在
[
a
,
b
]
[a,\,b]
[a,b]上连续,其中等号当且仅当存在常数
α
,
β
\alpha,\,\beta
α,β,使得
α
f
(
x
)
≡
β
g
(
x
)
\alpha f(x)\equiv\beta g(x)
αf(x)≡βg(x)时成立(
α
,
β
\alpha,\,\beta
α,β不同时为
0
0
0)。
证明思路
可以从积分定义出发,由Cauchy不等式得到,也可以类似由Cauchy不等式证明过程得出。
方法一
积分定义+Cauchy不等式。
将区间
[
a
,
b
]
n
[a,\,b]\,n
[a,b]n等分,令
x
i
=
a
+
i
n
(
b
−
a
)
x_i=a+\dfrac in(b-a)
xi=a+ni(b−a),应用Cauchy不等式,得到
(
1
n
∑
i
=
1
n
f
(
x
i
)
g
(
x
i
)
)
2
⩽
1
n
∑
i
=
1
n
f
2
(
x
i
)
⋅
1
n
∑
i
=
1
n
g
2
(
x
i
)
,
\left(\dfrac1n\sum_{i=1}^nf(x_i)g(x_i)\right)^2\leqslant\dfrac1n\sum_{i=1}^nf^2(x_i)\cdot\dfrac1n\sum_{i=1}^ng^2(x_i),
(n1i=1∑nf(xi)g(xi))2⩽n1i=1∑nf2(xi)⋅n1i=1∑ng2(xi),
令
n
→
∞
n\to\infty
n→∞,取极限得证。
方法二
利用积分变量的符号任意性,配凑完全平方式。此方法较为常用。
方法三
类比Cauchy不等式的证明思路方法三,构造二次型,即可得证。此时也可以将其推广到更加一般的情况。
应用
证明不等式
例题1
设函数
g
(
x
)
g(x)
g(x)在
[
0
,
a
]
[0,\,a]
[0,a]上连续可微。
g
(
0
)
=
0
g(0)=0
g(0)=0,证明:
∫
0
a
∣
g
(
x
)
g
′
(
x
)
∣
d
x
⩽
a
2
∫
0
a
∣
g
′
(
x
)
∣
2
d
x
,
(1)
\int_0^a|g(x)g'(x)|\,\mathrm{d}x\leqslant\dfrac a2\int_0^a|g'(x)|^2\,\mathrm{d}x,\tag{1}
∫0a∣g(x)g′(x)∣dx⩽2a∫0a∣g′(x)∣2dx,(1)
等号成立当且仅当
g
(
x
)
=
c
x
g(x)=cx
g(x)=cx(
c
c
c为常数)成立。
证明:记 f ( x ) = ∫ 0 x ∣ g ′ ( x ) ∣ d x ( 0 ⩽ x ⩽ a ) f(x)=\int_0^x|g'(x)|\,\mathrm{d}x\,(0\leqslant x\leqslant a) f(x)=∫0x∣g′(x)∣dx(0⩽x⩽a),则由原函数存在定理(可以看一下这篇文章回顾),得到 f ′ ( x ) = ∣ g ′ ( x ) ∣ f'(x)=|g'(x)| f′(x)=∣g′(x)∣,由 g ( 0 ) = 0 g(0)=0 g(0)=0以及积分的绝对值不等式得
∣ g ( x ) ∣ = ∣ g ( x ) − g ( 0 ) ∣ = ∣ ∫ 0 x g ′ ( t ) d t ∣ ⩽ ∫ 0 x ∣ g ′ ( t ) ∣ d t = f ( x ) , \color{red}|g(x)|=|g(x)-g(0)|=\left|\int_0^xg'(t)\,\mathrm{d}t\right|\leqslant\int_0^x|g'(t)|\,\mathrm{d}t=f(x), ∣g(x)∣=∣g(x)−g(0)∣=∣∣∣∣∫0xg′(t)dt∣∣∣∣⩽∫0x∣g′(t)∣dt=f(x),
所以原积分
∫ 0 a ∣ g ( x ) g ′ ( x ) ∣ d x ⩽ ∫ 0 a f ( x ) f ′ ( x ) d x = ∫ 0 a f ( x ) d f ( x ) = 1 2 f 2 ( x ) ∣ 0 a = 1 2 ( ∫ 0 a ∣ g ′ ( t ) ∣ d t ) 2 ⩽ 1 2 ∫ 0 a 1 2 d t ⋅ ∫ 0 a [ g ′ ( t ) ] 2 d t (Schwartz不等式) = a 2 ∫ 0 a ∣ g ′ ( x ) ∣ 2 d x , \begin{aligned} \int_0^a|g(x)g'(x)|\,\mathrm{d}x \leqslant & \int_0^af(x)f'(x)\,\mathrm{d}x=\int_0^af(x)\,\mathrm{d}f(x)\\ = & \frac12f^2(x)\Big|_{0}^a=\frac12\left(\int_0^a|g'(t)|\,\mathrm{d}t\right)^2\\ \leqslant & \frac12\int_0^a1^2\,\mathrm{d}t\cdot\int_0^a[g'(t)]^2\,\mathrm{d}t\qquad{\text{(Schwartz不等式)}}\\ = & \dfrac a2\int_0^a|g'(x)|^2\,\mathrm{d}x,\\ \end{aligned} ∫0a∣g(x)g′(x)∣dx⩽=⩽=∫0af(x)f′(x)dx=∫0af(x)df(x)21f2(x)∣∣∣0a=21(∫0a∣g′(t)∣dt)221∫0a12dt⋅∫0a[g′(t)]2dt(Schwartz不等式)2a∫0a∣g′(x)∣2dx,
当 g ( x ) = c x g(x)=cx g(x)=cx时,不等式 ( 1 ) (1) (1)显然成立,下证必要性。
若
(
1
)
(1)
(1)中等号成立,即
(
∫
0
a
∣
g
′
(
x
)
∣
d
x
)
2
=
a
∫
0
a
∣
g
′
(
x
)
∣
2
d
x
,
(2)
\left(\int_0^a|g'(x)|\,\mathrm{d}x\right)^2=a\!\int_0^a|g'(x)|^2\,\mathrm{d}x,\tag{2}
(∫0a∣g′(x)∣dx)2=a∫0a∣g′(x)∣2dx,(2)
记
A
=
∫
0
a
∣
g
′
(
x
)
∣
2
d
x
,
B
=
∫
0
a
∣
g
′
(
x
)
∣
d
x
A=\int_0^a|g'(x)|^2\,\mathrm{d}x,\,B=\int_0^a|g'(x)|\,\mathrm{d}x
A=∫0a∣g′(x)∣2dx,B=∫0a∣g′(x)∣dx,则
(
2
)
(2)
(2)式相当于下述方程
∫
0
a
(
1
+
λ
∣
g
′
(
x
)
∣
)
2
d
x
=
A
λ
2
+
2
B
λ
+
a
=
0
(3)
\int_0^a(1+\lambda|g'(x)|)^2\,\mathrm{d}x=A\lambda^2+2B\lambda+a=0\tag{3}
∫0a(1+λ∣g′(x)∣)2dx=Aλ2+2Bλ+a=0(3)
的判别式
Δ
=
0
\Delta=0
Δ=0,所以此方程有唯一实根$$(当
A
≠
0
A\neq0
A=0).
由于 g ′ ( x ) g'(x) g′(x)在 [ 0 , a ] [0,\,a] [0,a]上连续,将$$代入 ( 3 ) (3) (3),可以得到 B ∣ g ′ ( x ) ∣ = A B|g'(x)|=A B∣g′(x)∣=A,下面对 A A A的取值进行讨论。
1 ∘ 1^\circ 1∘: A ≠ 0 A\neq0 A=0, 则 B ≠ 0 B\neq0 B=0,所以 g ′ ( x ) = ± A B g'(x)=\pm\dfrac AB g′(x)=±BA,即 g ( x ) = ± A B x + c 1 g(x)=\pm\dfrac ABx+c_1 g(x)=±BAx+c1,而 g ( 0 ) = 0 g(0)=0 g(0)=0,所以 c 1 = 0 c_1=0 c1=0,即得到 g ( x ) = c x g(x)=cx g(x)=cx( c = ± A B c=\pm \dfrac AB c=±BA为一常数)。
2 ∘ 2^\circ 2∘: A = 0 A=0 A=0,而 g ′ ( x ) g'(x) g′(x)连续,有 g ′ ( x ) ≡ 0 ( x ∈ [ 0 , a ] ) g'(x)\equiv0\quad\big(x\in[0,\,a]\big) g′(x)≡0(x∈[0,a]),此时 g ( x ) = c 2 g(x)=c_2 g(x)=c2,而 g ( 0 ) = 0 g(0)=0 g(0)=0,所以 g ( x ) = 0 g(x)=0 g(x)=0。
综上,必要性得证。
求极限
例题2
设
f
(
x
)
,
g
(
x
)
f(x),\,g(x)
f(x),g(x)在
[
a
,
b
]
[a,\,b]
[a,b]上连续,
f
(
x
)
≢
0
f(x)\not\equiv0
f(x)≡0,
g
(
x
)
g(x)
g(x)有正下界。记
d
n
=
∫
a
b
∣
f
(
x
)
∣
n
g
(
x
)
d
x
,
n
=
1
,
2
,
⋯
.
d_n=\int_{a}^b|f(x)|^ng(x)\,\mathrm{d}x,\ n=1,\,2,\,\cdots.
dn=∫ab∣f(x)∣ng(x)dx, n=1,2,⋯. 证明:
lim
n
→
∞
d
n
+
1
d
n
=
max
a
⩽
x
⩽
b
∣
f
(
x
)
∣
.
\lim_{n\to\infty}\frac{d_{n+1}}{d_n}=\max_{a\leqslant x\leqslant b}|f(x)|.
n→∞limdndn+1=a⩽x⩽bmax∣f(x)∣.
证明:
这里说一下大致思路,具体步骤参考《数学分析中的典型问题与方法》。
- 拆项并利用Schwartz不等式得到 d n d_n dn与其两相邻项的关系: d n ⩽ d n − 1 d n + 1 d_n\leqslant\sqrt{d_{n-1}d_{n+1}} dn⩽dn−1dn+1,由此得到 d n + 1 d n \dfrac{d_{n+1}}{d_n} dndn+1单调增;
- 证明其有界,故由单调有界定理得知其极限存在;
- 计算极限。
W. H. Young不等式
积分形式
设
f
(
x
)
f(x)
f(x)单调递增,且在
[
0
,
+
∞
)
[0,\,+\infty)
[0,+∞)上连续,
f
(
0
)
=
0
,
a
,
b
>
0
f(0)=0,\ \ a,\,b>0
f(0)=0, a,b>0,
f
−
1
(
x
)
f^{-1}(x)
f−1(x)表示
f
(
x
)
f(x)
f(x)的反函数,则有
a
b
⩽
∫
0
a
f
(
x
)
d
x
+
∫
0
b
f
−
1
(
y
)
d
y
,
ab\leqslant\int_0^af(x)\,\mathrm{d}x+\int_0^bf^{-1}(y)\,\mathrm{d}y,
ab⩽∫0af(x)dx+∫0bf−1(y)dy,
等号成立当且仅当
f
(
a
)
=
b
f(a)=b
f(a)=b。
证明思路
根据定积分的几何表示可以显然得到。
一般形式
设
a
,
b
>
0
,
p
>
1
,
1
p
+
1
q
=
1
a,\,b>0,\ p>1,\ \dfrac1p+\dfrac1q=1
a,b>0, p>1, p1+q1=1,则有
a
b
⩽
a
p
p
+
b
q
q
,
ab\leqslant\frac{a^p}p+\frac{b^q}q,
ab⩽pap+qbq,
等号成立当且仅当
a
p
=
b
q
a^p=b^q
ap=bq,其中
p
,
q
p,\,q
p,q称为共轭指数,显然有
p
+
q
=
p
q
p+q=pq
p+q=pq。