常用不等式及证明思路总结(一)

本文深入探讨了数学分析中的关键不等式,包括Jensen不等式、均值不等式、Cauchy不等式、Schwartz不等式及W.H.Young不等式的证明与应用。通过实例解析,揭示了这些不等式在解决复杂数学问题中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

复习一下一些大学学习中常见的一些不等式,及其用法和证明思路。想深入了解的朋友可以看裴礼文老师所著《数学分析中的典型问题与方法》。

Jensen不等式

f f f [ a ,   b ] [a,\,b] [a,b]上的凸函数,则对任意 x i ∈ [ a ,   b ] x_i\in[a,\,b] xi[a,b] λ i > 0   ( i = 1 ,   2 ,   ⋯   ,   n ) \lambda_i>0\ (i=1,\,2,\,\cdots,\,n) λi>0 (i=1,2,,n) ∑ i = 1 n λ i = 1 \sum\limits_{i=1}^n\lambda_i=1 i=1nλi=1,有
f ( ∑ i = 1 n λ i x i ) ⩽ ∑ i = 1 n λ i f ( x i ) . f\left(\sum_{i=1}^n\lambda_ix_i\right)\leqslant\sum_{i=1}^n\lambda_if(x_i). f(i=1nλixi)i=1nλif(xi).

P.S. 在《数学分析(华东师大第四版)》一书中该不等式作为函数凸性定义的推广引入,这里使用该书中的定义。

证明思路

n = 2 n=2 n=2时显然成立; n = k n=k n=k时只需证明对任意 x i ∈ [ a ,   b ] x_i\in[a,\,b] xi[a,b] α i > 0   ( i = 1 ,   2 ,   ⋯   ,   n ) \alpha_i>0\ (i=1,\,2,\,\cdots,\,n) αi>0 (i=1,2,,n) ∑ i = 1 n α i = 1 \sum\limits_{i=1}^n\alpha_i=1 i=1nαi=1,有
f ( ∑ i = 1 n α i x i ) ⩽ ∑ i = 1 n α i f ( x i ) . f\left(\sum_{i=1}^n\alpha_ix_i\right)\leqslant\sum_{i=1}^n\alpha_if(x_i). f(i=1nαixi)i=1nαif(xi).
作代换,令 α i = λ i 1 − λ k + 1 ,   i = 1 ,   2 ,   ⋯   ,   k \alpha_i=\dfrac{\lambda_i}{1-\lambda_{k+1}},\,i=1,\,2,\,\cdots,\,k αi=1λk+1λi,i=1,2,,k,则有 ∑ i = 1 n α i = 1 \sum\limits_{i=1}^n\alpha_i=1 i=1nαi=1,利用数学归纳法即可证得。

根据这个不等式可以立刻推出下面的均值不等式以及后面的Young不等式。

均值不等式

对任意 n n n个实数 a i ⩾ 0 ( i = 1 ,   2 ,   ⋯   ,   n ) a_i\geqslant0(i=1,\,2,\,\cdots,\,n) ai0(i=1,2,,n)恒有
a 1 a 2 ⋯ a n n ⩽ a 1 + a 2 + ⋯ + a n n \sqrt[n]{a_1a_2\cdots a_n}\leqslant\frac{a_1+a_2+\cdots+a_n}n na1a2an na1+a2++an
上式可简记为几何平均值 ⩽ \leqslant 算术平均值,等号当且仅当 a 1 = a 2 = ⋯ = a n a_1=a_2=\cdots=a_n a1=a2==an时成立。

应用

证明不等式。

例题1

设正值函数 f ( x ) f(x) f(x) [ 0 ,   1 ] [0,\,1] [0,1]上连续,证明
e ∫ 0 1 ln ⁡ f ( x )   d x ⩽ ∫ 0 1 f ( x )   d x . \mathrm{e}^{ \int_0^1\ln f(x)\,\mathrm{d}x}\leqslant\int_0^1f(x)\,\mathrm{d}x. e01lnf(x)dx01f(x)dx.
证明:

[ 0 ,   1 ] [0,\,1] [0,1] n n n等分,计算积分和
∫ 0 1 f ( x )   d x = lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) , ∫ 0 1 ln ⁡ f ( x )   d x = lim ⁡ n → ∞ 1 n ∑ i = 1 n ln ⁡ f ( i n ) = lim ⁡ n → ∞ ln ⁡ [ ∏ i = 1 n f ( i n ) ] 1 n , \begin{aligned} \int_0^1f(x)\,\mathrm{d}x &=\lim_{n\to\infty}\frac1n\sum_{i=1}^nf\left(\frac in\right),\\ \int_0^1\ln f(x)\,\mathrm{d}x &=\lim_{n\to\infty}\frac1n\sum_{i=1}^n\ln f\left(\frac in\right)=\lim_{n\to\infty}\ln\left[\prod_{i=1}^nf\left(\frac in\right)\right]^{\frac1n},\\ \end{aligned} 01f(x)dx01lnf(x)dx=nlimn1i=1nf(ni),=nlimn1i=1nlnf(ni)=nlimln[i=1nf(ni)]n1,
所以有
e ∫ 0 1 ln ⁡  ⁣ f ( x )   d x = lim ⁡ n → ∞ [ ∏ i = 1 n f ( i n ) ] 1 n ⩽ lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) = ∫ 0 1 f ( x )   d x . \mathrm{\large e}^{\int_0^1\ln\!f(x)\,\mathrm{d}x}=\lim_{n\to\infty}\left[\prod_{i=1}^nf\left(\frac in\right)\right]^{\frac1n}\leqslant\lim_{n\to\infty}\frac1n\sum_{i=1}^nf\left(\frac in\right)=\int_0^1f(x)\,\mathrm{d}x. e01lnf(x)dx=nlim[i=1nf(ni)]n1nlimn1i=1nf(ni)=01f(x)dx.

另证:

考虑原不等式两边取对数,有
∫ 0 1 ln ⁡ f ( x )   d x ⩽ ln ⁡ ∫ 0 1 f ( x )   d x , {\int_0^1\ln f(x)\,\mathrm{d}x}\leqslant\ln\int_0^1f(x)\,\mathrm{d}x, 01lnf(x)dxln01f(x)dx,
∫ 0 1 f ( x ) d x = S \int_0^1f(x)\mathrm{d}x=S 01f(x)dx=S,则上式等价于
∫ 0 1 ( ln ⁡ f ( x ) − ln ⁡ S ) d x ⩽ 0 , \int_0^1\big(\ln f(x)-\ln S\big)\mathrm{d}x\leqslant0, 01(lnf(x)lnS)dx0,
(由于定积分为一常数,所以显然可以将其从0到1进行积分,而其值保持不变)

上式进行变换可得到:
∫ 0 1 ( ln ⁡ f ( x ) − ln ⁡ S ) d x = ∫ 0 1 ln ⁡ f ( x ) S d x = ∫ 0 1 [ 1 + ( ln ⁡ f ( x ) S − 1 ) ] d x ⩽ ∫ 0 1 ( f ( x ) S − 1 ) d x [ 利用不等式 ln ⁡ ( 1 + x ) < x ( x > − 1 时 ) 得 到 ] = 1 S ∫ 0 1 f ( x ) d x − 1 = 0 □ \begin{aligned} \int_0^1\big(\ln f(x)-\ln S\big)\mathrm{d}x&=\int_0^1\ln\frac{f(x)}S\mathrm{d}x\\ &=\int_0^1\left[1+\left(\ln\frac{f(x)}S-1\right)\right]\mathrm{d}x\\ &\leqslant\int_0^1\left(\frac{f(x)}S-1\right)\mathrm{d}x\\ &[\text{利用不等式}\ln(1+x)<x(x>-1\text{时})得到]\\ &=\frac1S\int_0^1f(x)\mathrm{d}x-1=0\qquad\qquad\qquad\qquad\qquad\qquad\quad\Box \end{aligned} 01(lnf(x)lnS)dx=01lnSf(x)dx=01[1+(lnSf(x)1)]dx01(Sf(x)1)dx[利用不等式ln(1+x)<x(x>1)]=S101f(x)dx1=0

Cauchy不等式

a i ,   b i ,   ( i = 1 ,   2 ,   ⋯   ,   n ) a_i,\,b_i,\,(i=1,\,2,\,\cdots,\,n) ai,bi,(i=1,2,,n)为任意实数,则有
( ∑ i = 1 n a i b i ) 2 ⩽ ∑ i = 1 n a i 2 ⋅ ∑ i = 1 n b i 2 , \left(\sum_{i=1}^na_ib_i\right)^2\leqslant\sum_{i=1}^na_i^2\cdot\sum_{i=1}^nb_i^2, (i=1naibi)2i=1nai2i=1nbi2,
等号当且仅当 a i a_i ai b i b_i bi成比例时成立。

证明思路

方法一

构造函数,利用判别式(常用)。
0 ⩽ ∑ i = 1 n ( a i x + b i ) 2 = ( ∑ i = 1 n a i 2 ) x 2 + 2 ( ∑ i = 1 n a i b i ) x + ∑ i = 1 n b i 2 , 0\leqslant\sum_{i=1}^n(a_ix+b_i)^2=\left(\sum_{i=1}^na_i^2\right)x^2+2\left(\sum_{i=1}^na_ib_i\right)x+\sum_{i=1}^nb_i^2, 0i=1n(aix+bi)2=(i=1nai2)x2+2(i=1naibi)x+i=1nbi2,
关于 x x x的二次三项式保持非负,所以判别式
( ∑ i = 1 n a i b i ) 2 − ∑ i = 1 n a i 2 ⋅ ∑ i = 1 n b i 2 ⩽ 0. \left(\sum_{i=1}^na_ib_i\right)^2-\sum_{i=1}^na_i^2\cdot\sum_{i=1}^nb_i^2\leqslant0. (i=1naibi)2i=1nai2i=1nbi20.

方法二

配方。

方法三

二次型的性质。讨论关于 x ,   y x,\,y x,y的二次型 ∑ i = 1 n ( a i x + b i y ) 2 \sum\limits_{i=1}^n(a_ix+b_iy)^2 i=1n(aix+biy)2
0 ⩽ ∑ i = 1 n ( a i x + b i y ) 2 = ( ∑ i = 1 n a i 2 ) x 2 + 2 ( ∑ i = 1 n a i b i ) x y + ( ∑ i = 1 n b i 2 ) y 2 , 0\leqslant\sum\limits_{i=1}^n(a_ix+b_iy)^2=\left(\sum_{i=1}^na_i^2\right)x^2+2\left(\sum_{i=1}^na_ib_i\right)xy+\left(\sum_{i=1}^nb_i^2\right)y^2, 0i=1n(aix+biy)2=(i=1nai2)x2+2(i=1naibi)xy+(i=1nbi2)y2,
即此二次型非负定,所以有
∣ ∑ i = 1 n a i 2 ∑ i = 1 n a i b i ∑ i = 1 n a i b i ∑ i = 1 n b i 2 ∣ ⩾ 0 , \begin{vmatrix} \sum\limits_{i=1}^na_i^2&\sum\limits_{i=1}^na_ib_i\\ \sum\limits_{i=1}^na_ib_i&\sum\limits_{i=1}^nb_i^2 \end{vmatrix}\geqslant0, i=1nai2i=1naibii=1naibii=1nbi20,
证毕。

根据此证明,可以推广Cauchy不等式为
det ⁡ ( ∑ i = 1 n a i k a i j ) ⩾ 0 , \det\left(\sum_{i=1}^na_{ik}a_{ij}\right)\geqslant0, det(i=1naikaij)0,
等号成立当且仅当 ( a 11 ,   a 21 ,   ⋯   ,   a n 1 ) ,   ⋯   ,   ( a 1 m ,   a 2 m ,   ⋯   ,   a n m ) (a_{11},\,a_{21},\,\cdots,\,a_{n1}),\,\cdots,\,(a_{1m},\,a_{2m},\,\cdots,\,a_{nm}) (a11,a21,,an1),,(a1m,a2m,,anm)线性相关时成立,即:存在不全为零的一组常数 x 1 ,   ⋯   ,   x m x_1,\,\cdots,\,x_m x1,,xm使得
a i 1 x 1 + a i 2 x 2 + ⋯ + a i m x m = 0 ( i = 1 ,   2 ,   ⋯   ,   n ) . a_{i1}x_1+a_{i2}x_2+\cdots+a_{im}x_m=0\quad(i=1,\,2,\,\cdots,\,n). ai1x1+ai2x2++aimxm=0(i=1,2,,n).

Schwartz不等式

即Cauchy不等式的积分形式。

f ( x ) ,   g ( x ) f(x),\,g(x) f(x),g(x) [ a ,   b ] [a,\,b] [a,b]上可积,则
( ∫ a b f ( x ) g ( x )   d x ) 2 ⩽ ∫ a b f 2 ( x )   d x  ⁣ ∫ a b g 2 ( x )   d x \left(\int_a^bf(x)g(x)\,\mathrm{d}x\right)^2\leqslant\int_a^bf^2(x)\,\mathrm{d}x\!\int_a^bg^2(x)\,\mathrm{d}x (abf(x)g(x)dx)2abf2(x)dxabg2(x)dx
f ( x ) ,   g ( x ) f(x),\,g(x) f(x),g(x) [ a ,   b ] [a,\,b] [a,b]上连续,其中等号当且仅当存在常数 α ,   β \alpha,\,\beta α,β,使得 α f ( x ) ≡ β g ( x ) \alpha f(x)\equiv\beta g(x) αf(x)βg(x)时成立( α ,   β \alpha,\,\beta α,β不同时为 0 0 0)。

证明思路

可以从积分定义出发,由Cauchy不等式得到,也可以类似由Cauchy不等式证明过程得出。

方法一

积分定义+Cauchy不等式。

将区间 [ a ,   b ]   n [a,\,b]\,n [a,b]n等分,令 x i = a + i n ( b − a ) x_i=a+\dfrac in(b-a) xi=a+ni(ba),应用Cauchy不等式,得到
( 1 n ∑ i = 1 n f ( x i ) g ( x i ) ) 2 ⩽ 1 n ∑ i = 1 n f 2 ( x i ) ⋅ 1 n ∑ i = 1 n g 2 ( x i ) , \left(\dfrac1n\sum_{i=1}^nf(x_i)g(x_i)\right)^2\leqslant\dfrac1n\sum_{i=1}^nf^2(x_i)\cdot\dfrac1n\sum_{i=1}^ng^2(x_i), (n1i=1nf(xi)g(xi))2n1i=1nf2(xi)n1i=1ng2(xi),
n → ∞ n\to\infty n,取极限得证。

方法二

利用积分变量的符号任意性,配凑完全平方式。此方法较为常用。

方法三

类比Cauchy不等式的证明思路方法三,构造二次型,即可得证。此时也可以将其推广到更加一般的情况。

应用

证明不等式

例题1

设函数 g ( x ) g(x) g(x) [ 0 ,   a ] [0,\,a] [0,a]上连续可微。 g ( 0 ) = 0 g(0)=0 g(0)=0,证明:
∫ 0 a ∣ g ( x ) g ′ ( x ) ∣   d x ⩽ a 2 ∫ 0 a ∣ g ′ ( x ) ∣ 2   d x , (1) \int_0^a|g(x)g'(x)|\,\mathrm{d}x\leqslant\dfrac a2\int_0^a|g'(x)|^2\,\mathrm{d}x,\tag{1} 0ag(x)g(x)dx2a0ag(x)2dx,(1)
等号成立当且仅当 g ( x ) = c x g(x)=cx g(x)=cx( c c c为常数)成立。

证明:记 f ( x ) = ∫ 0 x ∣ g ′ ( x ) ∣   d x   ( 0 ⩽ x ⩽ a ) f(x)=\int_0^x|g'(x)|\,\mathrm{d}x\,(0\leqslant x\leqslant a) f(x)=0xg(x)dx(0xa),则由原函数存在定理(可以看一下这篇文章回顾),得到 f ′ ( x ) = ∣ g ′ ( x ) ∣ f'(x)=|g'(x)| f(x)=g(x),由 g ( 0 ) = 0 g(0)=0 g(0)=0以及积分的绝对值不等式得

∣ g ( x ) ∣ = ∣ g ( x ) − g ( 0 ) ∣ = ∣ ∫ 0 x g ′ ( t )   d t ∣ ⩽ ∫ 0 x ∣ g ′ ( t ) ∣   d t = f ( x ) , \color{red}|g(x)|=|g(x)-g(0)|=\left|\int_0^xg'(t)\,\mathrm{d}t\right|\leqslant\int_0^x|g'(t)|\,\mathrm{d}t=f(x), g(x)=g(x)g(0)=0xg(t)dt0xg(t)dt=f(x),

所以原积分

∫ 0 a ∣ g ( x ) g ′ ( x ) ∣   d x ⩽ ∫ 0 a f ( x ) f ′ ( x )   d x = ∫ 0 a f ( x )   d f ( x ) = 1 2 f 2 ( x ) ∣ 0 a = 1 2 ( ∫ 0 a ∣ g ′ ( t ) ∣   d t ) 2 ⩽ 1 2 ∫ 0 a 1 2   d t ⋅ ∫ 0 a [ g ′ ( t ) ] 2   d t (Schwartz不等式) = a 2 ∫ 0 a ∣ g ′ ( x ) ∣ 2   d x , \begin{aligned} \int_0^a|g(x)g'(x)|\,\mathrm{d}x \leqslant & \int_0^af(x)f'(x)\,\mathrm{d}x=\int_0^af(x)\,\mathrm{d}f(x)\\ = & \frac12f^2(x)\Big|_{0}^a=\frac12\left(\int_0^a|g'(t)|\,\mathrm{d}t\right)^2\\ \leqslant & \frac12\int_0^a1^2\,\mathrm{d}t\cdot\int_0^a[g'(t)]^2\,\mathrm{d}t\qquad{\text{(Schwartz不等式)}}\\ = & \dfrac a2\int_0^a|g'(x)|^2\,\mathrm{d}x,\\ \end{aligned} 0ag(x)g(x)dx==0af(x)f(x)dx=0af(x)df(x)21f2(x)0a=21(0ag(t)dt)2210a12dt0a[g(t)]2dt(Schwartz不等式)2a0ag(x)2dx,

g ( x ) = c x g(x)=cx g(x)=cx时,不等式 ( 1 ) (1) (1)显然成立,下证必要性。

( 1 ) (1) (1)中等号成立,即
( ∫ 0 a ∣ g ′ ( x ) ∣   d x ) 2 = a  ⁣ ∫ 0 a ∣ g ′ ( x ) ∣ 2   d x , (2) \left(\int_0^a|g'(x)|\,\mathrm{d}x\right)^2=a\!\int_0^a|g'(x)|^2\,\mathrm{d}x,\tag{2} (0ag(x)dx)2=a0ag(x)2dx,(2)
A = ∫ 0 a ∣ g ′ ( x ) ∣ 2   d x ,   B = ∫ 0 a ∣ g ′ ( x ) ∣   d x A=\int_0^a|g'(x)|^2\,\mathrm{d}x,\,B=\int_0^a|g'(x)|\,\mathrm{d}x A=0ag(x)2dx,B=0ag(x)dx,则 ( 2 ) (2) (2)式相当于下述方程
∫ 0 a ( 1 + λ ∣ g ′ ( x ) ∣ ) 2   d x = A λ 2 + 2 B λ + a = 0 (3) \int_0^a(1+\lambda|g'(x)|)^2\,\mathrm{d}x=A\lambda^2+2B\lambda+a=0\tag{3} 0a(1+λg(x))2dx=Aλ2+2Bλ+a=0(3)
的判别式 Δ = 0 \Delta=0 Δ=0,所以此方程有唯一实根$$(当 A ≠ 0 A\neq0 A=0).

由于 g ′ ( x ) g'(x) g(x) [ 0 ,   a ] [0,\,a] [0,a]上连续,将$$代入 ( 3 ) (3) (3),可以得到 B ∣ g ′ ( x ) ∣ = A B|g'(x)|=A Bg(x)=A,下面对 A A A的取值进行讨论。

1 ∘ 1^\circ 1 A ≠ 0 A\neq0 A=0, 则 B ≠ 0 B\neq0 B=0,所以 g ′ ( x ) = ± A B g'(x)=\pm\dfrac AB g(x)=±BA,即 g ( x ) = ± A B x + c 1 g(x)=\pm\dfrac ABx+c_1 g(x)=±BAx+c1,而 g ( 0 ) = 0 g(0)=0 g(0)=0,所以 c 1 = 0 c_1=0 c1=0,即得到 g ( x ) = c x g(x)=cx g(x)=cx c = ± A B c=\pm \dfrac AB c=±BA为一常数)。

2 ∘ 2^\circ 2 A = 0 A=0 A=0,而 g ′ ( x ) g'(x) g(x)连续,有 g ′ ( x ) ≡ 0 ( x ∈ [ 0 ,   a ] ) g'(x)\equiv0\quad\big(x\in[0,\,a]\big) g(x)0(x[0,a]),此时 g ( x ) = c 2 g(x)=c_2 g(x)=c2,而 g ( 0 ) = 0 g(0)=0 g(0)=0,所以 g ( x ) = 0 g(x)=0 g(x)=0

综上,必要性得证。

求极限

例题2

f ( x ) ,   g ( x ) f(x),\,g(x) f(x),g(x) [ a ,   b ] [a,\,b] [a,b]上连续, f ( x ) ≢ 0 f(x)\not\equiv0 f(x)0 g ( x ) g(x) g(x)有正下界。记 d n = ∫ a b ∣ f ( x ) ∣ n g ( x )   d x ,   n = 1 ,   2 ,   ⋯   . d_n=\int_{a}^b|f(x)|^ng(x)\,\mathrm{d}x,\ n=1,\,2,\,\cdots. dn=abf(x)ng(x)dx, n=1,2,. 证明:
lim ⁡ n → ∞ d n + 1 d n = max ⁡ a ⩽ x ⩽ b ∣ f ( x ) ∣ . \lim_{n\to\infty}\frac{d_{n+1}}{d_n}=\max_{a\leqslant x\leqslant b}|f(x)|. nlimdndn+1=axbmaxf(x).
证明:

这里说一下大致思路,具体步骤参考《数学分析中的典型问题与方法》。

  1. 拆项并利用Schwartz不等式得到 d n d_n dn与其两相邻项的关系: d n ⩽ d n − 1 d n + 1 d_n\leqslant\sqrt{d_{n-1}d_{n+1}} dndn1dn+1 ,由此得到 d n + 1 d n \dfrac{d_{n+1}}{d_n} dndn+1单调增;
  2. 证明其有界,故由单调有界定理得知其极限存在;
  3. 计算极限。

W. H. Young不等式

积分形式

f ( x ) f(x) f(x)单调递增,且在 [ 0 ,   + ∞ ) [0,\,+\infty) [0,+)上连续, f ( 0 ) = 0 ,    a ,   b > 0 f(0)=0,\ \ a,\,b>0 f(0)=0,  a,b>0 f − 1 ( x ) f^{-1}(x) f1(x)表示 f ( x ) f(x) f(x)的反函数,则有
a b ⩽ ∫ 0 a f ( x )   d x + ∫ 0 b f − 1 ( y )   d y , ab\leqslant\int_0^af(x)\,\mathrm{d}x+\int_0^bf^{-1}(y)\,\mathrm{d}y, ab0af(x)dx+0bf1(y)dy,
等号成立当且仅当 f ( a ) = b f(a)=b f(a)=b

证明思路

根据定积分的几何表示可以显然得到。

一般形式

a ,   b > 0 ,   p > 1 ,   1 p + 1 q = 1 a,\,b>0,\ p>1,\ \dfrac1p+\dfrac1q=1 a,b>0, p>1, p1+q1=1,则有
a b ⩽ a p p + b q q , ab\leqslant\frac{a^p}p+\frac{b^q}q, abpap+qbq,
等号成立当且仅当 a p = b q a^p=b^q ap=bq,其中 p ,   q p,\,q p,q称为共轭指数,显然有 p + q = p q p+q=pq p+q=pq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值