前面的话
介绍完域扩张(其实前面写的有点简略了,并没有结合环的部分, 导致叙述起来连贯性没有那么强), 就该来分裂域这部分了, 这里我有一本十分推荐的教材《代数学基础》(张英伯,王恺顺著), 里面对一些定义和定理的阐述非常细致, 也比较适合入门, 大家如果需要资源的话可以私信我.
分裂域引入
关于分裂域部分, 其实分裂域就是前面所述干域(单扩张)的一个推广, 利用分裂域的一些性质可以很方便的得到Galois的基本理论, 以及很多关于方程可解的条件等, 可以说是深入代数学核心思想的一个重要工具.
定义
设 f ( x ) ∈ F [ x ] f(x)\in F[x] f(x)∈F[x]是 n n n次多项式, 若存在 K K K的扩域 L L L, 使得 f ( x ) = c ( x − α 1 ) ⋯ ( x − α n ) f(x)=c(x-\alpha_1)\cdots(x-\alpha_n) f(x)=c(x−α1)⋯(x−αn), 其中 α i ∈ L \alpha_i\in L αi∈L, 则称 K ( α 1 , ⋯ , α n ) K(\alpha_1,\,\cdots,\,\alpha_n) K(α1,⋯,αn)为 L L L中关于 f f f的分裂域.
(其中系数 c c c保证了多项式 f ( x ) f(x) f(x)不是首一多项式时也成立)
从定义就可以看出, 分裂域的构造相当于是在单扩张的基础上, 进行扩域的构造, 以得到 f f f的唯一因子分解.
分裂域的存在唯一性
存在性
如果 f f f为一次多项式, 显然成立;
如果
f
f
f次数大于1, 假设存在性对
n
−
1
n-1
n−1次多项式成立. 设在
F
[
x
]
F[x]
F[x]中,
f
(
x
)
=
p
(
x
)
g
(
x
)
,
f(x)=p(x)g(x),
f(x)=p(x)g(x),
其中
p
(
x
)
p(x)
p(x)为
F
F
F上的首一不可约多项式.
作干域
F
(
α
1
)
F(\alpha_1)
F(α1), 使得
α
1
\alpha_1
α1在
F
F
F上的极小多项式为
p
(
x
)
p(x)
p(x), 于是有
f
(
α
1
)
=
p
(
α
1
)
g
(
α
1
)
=
0
,
f(\alpha_1)=p(\alpha_1)g(\alpha_1)=0,
f(α1)=p(α1)g(α1)=0,
因此
f
(
x
)
f(x)
f(x)在
F
(
α
1
)
F(\alpha_1)
F(α1)上可以分解为
f
(
x
)
=
(
x
−
α
1
)
f
1
(
x
)
.
f(x)=(x-\alpha_1)f_1(x).
f(x)=(x−α1)f1(x).
由归纳假设, 设
f
1
(
x
)
f_1(x)
f1(x)在
F
(
α
1
)
F(\alpha_1)
F(α1)上的分裂域为
E
E
E, 那么
f
1
(
x
)
f_1(x)
f1(x)可以在
E
[
x
]
E[x]
E[x]中分解为
f
1
(
x
)
=
c
(
x
−
α
2
)
⋯
(
x
−
α
n
)
f_1(x)=c(x-\alpha_2)\cdots(x-\alpha_n)
f1(x)=c(x−α2)⋯(x−αn).于是
f
(
x
)
f(x)
f(x)在
E
[
x
]
E[x]
E[x]中分解为:
f
(
x
)
=
c
(
x
−
α
1
)
(
x
−
α
2
)
⋯
(
x
−
α
n
)
.
f(x)=c(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n).
f(x)=c(x−α1)(x−α2)⋯(x−αn).
所以
E
=
F
(
α
1
)
(
α
2
,
⋯
,
α
n
)
=
F
(
α
1
,
α
2
,
⋯
,
α
n
)
E=F(\alpha_1)(\alpha_2,\cdots,\alpha_n)=F(\alpha_1,\alpha_2,\cdots,\alpha_n)
E=F(α1)(α2,⋯,αn)=F(α1,α2,⋯,αn)为
f
(
x
)
f(x)
f(x)在
F
F
F上的分裂域.
我们可以从证明中还可以得到:
[
F
(
α
1
,
⋯
,
α
n
)
:
F
]
⩽
n
!
[F(\alpha_1,\,\cdots,\,\alpha_n):F]\leqslant n!
[F(α1,⋯,αn):F]⩽n!
求分裂域
设
f
(
x
)
=
x
3
−
2
∈
Q
[
x
]
f(x)=x^3-2\in\mathbb{Q}[x]
f(x)=x3−2∈Q[x]为有理数域上的3次不可约多项式, 令
ω
=
−
1
+
−
3
2
\omega=\frac{-1+\sqrt{-3}}{2}
ω=2−1+−3, 则
f
(
x
)
=
(
x
−
2
3
)
(
x
−
2
3
ω
)
(
x
−
2
3
ω
2
)
,
f(x)=(x-\sqrt[3]2)(x-\sqrt[3]2\omega)(x-\sqrt[3]2\omega^2),
f(x)=(x−32)(x−32ω)(x−32ω2),
为
f
(
x
)
f(x)
f(x)在
C
[
x
]
\mathbb{C}[x]
C[x]中的分解. 求
f
(
x
)
f(x)
f(x)在
Q
\mathbb{Q}
Q上的分裂域.
由分解式显然可知分裂域为 Q ( 2 3 , 2 3 ω , 2 3 ω 2 ) = Q ( 2 3 , ω ) \mathbb{Q}(\sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2)=\mathbb{Q}(\sqrt[3]2,\omega) Q(32,32ω,32ω2)=Q(32,ω).
唯一性
只需证一个给定多项式在域 F F F上的分裂域是同构的.
由于这里的严密证明需要用到环同态的一些概念, 在之后的部分我们再来细讲. 这里大概说一下思路:
通过单扩张构造扩域链, 只需找如下的同构映射
ρ : K ( α 1 , ⋯ , α n ) → K ( β 1 , ⋯ , β n ) \rho: K(\alpha_1,\,\cdots,\,\alpha_n)\to K(\beta_1,\,\cdots,\,\beta_n) ρ:K(α1,⋯,αn)→K(β1,⋯,βn)
以第一个扩域为例, 其上的极小多项式记为
p 1 ( x ) = k 1 + k 2 x + ⋯ + k s x s − 1 p_1(x)=k_1+k_2x+\cdots+k_sx^{s-1} p1(x)=k1+k2x+⋯+ksxs−1
deg ( p ) = s \deg(p)=s deg(p)=s, 且有 p 1 ( α ) = 0 p_1(\alpha)=0 p1(α)=0.通过 ρ \rho ρ作用, 可得到:
ρ ( p 1 ( α ) ) = k 1 + k 2 ρ ( α ) + ⋯ + k s ρ ( α s − 1 ) = 0 \rho(p_1(\alpha))=k_1+k_2\rho(\alpha)+\cdots+k_s\rho(\alpha^{s-1})=0 ρ(p1(α))=k1+k2ρ(α)+⋯+ksρ(αs−1)=0
即可知 p ( β ) = 0 p(\beta)=0 p(β)=0, β = ρ ( α ) \beta=\rho(\alpha) β=ρ(α)为 p ( x ) p(x) p(x)在 E E E中的一个根.于是可知 p ( x ) p(x) p(x)也为像的极小多项式, 由此, 我们找到了这样一个域同态.
下面介绍关于自同构群的定义:
自同构群
设 E E E是一个域, 则 E E E的全体自同构的集合关于变幻的合成构成一个群, 称为 E E E的自同构群(automorphism group), 记作 Aut ( E ) \text{Aut}(E) Aut(E).
例子: 求分裂域的自同构群
例1: 设
f
(
x
)
=
x
3
−
2
∈
Q
[
x
]
f(x)=x^3-2\in\mathbb{Q}[x]
f(x)=x3−2∈Q[x]为有理数域上的3次不可约多项式, 令
ω
=
−
1
+
−
3
2
\omega=\frac{-1+\sqrt{-3}}{2}
ω=2−1+−3, 则
f
(
x
)
=
(
x
−
2
3
)
(
x
−
2
3
ω
)
(
x
−
2
3
ω
2
)
,
f(x)=(x-\sqrt[3]2)(x-\sqrt[3]2\omega)(x-\sqrt[3]2\omega^2),
f(x)=(x−32)(x−32ω)(x−32ω2),
为
f
(
x
)
f(x)
f(x)在
C
[
x
]
\mathbb{C}[x]
C[x]中的分解. 令
E
=
Q
(
2
3
,
2
3
ω
,
2
3
ω
2
)
E=\mathbb{Q}(\sqrt[3]2, \sqrt[3]2\omega, \sqrt[3]2\omega^2)
E=Q(32,32ω,32ω2), 试找出
E
E
E的自同构群
Aut
(
E
)
\text{Aut}(E)
Aut(E)中的元素.
只要找 E → E E\to E E→E的同构映射, 对于 E E E来说, 首先要找到其扩域是如何生成的, 于是, 作扩域链如下
Q ⊂ Q ( 2 3 ) ⊂ Q ( 2 3 , 2 3 ω ) ⊂ Q ( 2 3 , 2 3 ω , 2 3 ω 2 ) = E = Q ( 2 3 , ω ) \mathbb{Q}\subset\mathbb{Q}(\sqrt[3]2)\subset\mathbb{Q}(\sqrt[3]2, \sqrt[3]2\omega)\subset\mathbb{Q}(\sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2)=E=\mathbb{Q}(\sqrt[3]2,\omega) Q⊂Q(32)⊂Q(32,32ω)⊂Q(32,32ω,32ω2)=E=Q(32,ω)
(最后一个等号是因为最后一个根可以由前两根表示)为方便起见. 我们用 α 1 , α 2 , α 3 \alpha_1,\,\alpha_2,\,\alpha_3 α1,α2,α3分别表示三个根 2 3 , 2 3 ω , 2 3 ω 2 \sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2 32,32ω,32ω2, 则
思路1: (通过极小多项式变换来找自同构)
对于第一个域 Q \mathbb{Q} Q, 很显然其到 E E E的同构映射只有 i d id id(identity,恒同映射).
对于第二个域 Q ( α 1 ) \mathbb{Q}(\alpha_1) Q(α1), 设有一映射 ρ 1 : Q ( α 1 ) → E \rho_1:\mathbb{Q}(\alpha_1)\to E ρ1:Q(α1)→E 满足条件, 则对于 ρ 1 \rho_1 ρ1的选取, 有如下三种选择:
ρ 1 : { α 1 ↦ α 1 ( 1 ) α 1 ↦ α 2 ( 2 ) α 1 ↦ α 3 ( 3 ) \rho_1:\begin{cases} \alpha_1\mapsto \alpha_1\qquad(1)\\ \alpha_1\mapsto \alpha_2\qquad(2)\\ \alpha_1\mapsto \alpha_3\qquad(3)\\ \end{cases} ρ1:⎩⎪⎨⎪⎧α1↦α1(1)α1↦α2(2)α1↦α3(3)
设 p 1 ( x ) = x 3 − 2 ∈ Q [ x ] p_1(x)=x^3-2\in \mathbb{Q}[x] p1(x)=x3−2∈Q[x]为 Q \mathbb{Q} Q上的极小多项式, 其扩域 Q ( α 1 ) \mathbb{Q}(\alpha_1) Q(α1)下的极小多项式为
p 2 ( x ) = x 2 + α 1 x + α 1 2 ∈ Q [ x ] , p_2(x)=x^2+\alpha_1x+\alpha_1^2\in\mathbb{Q}[x], p2(x)=x2+α1x+α12∈Q[x],
显然 p 2 ( x ) p_2(x) p2(x)在复数域中有两根 α 2 , α 3 \alpha_2,\alpha_3 α2,α3.这里以 ( 3 ) (3) (3)为例, 将 ρ 1 \rho_1 ρ1作用于该多项式, 即可得到:
ρ 1 ( p 2 ( x ) ) = x 2 + α 3 x + α 3 2 = x 3 − α 3 3 x − α 3 = x 3 − 2 x − α 3 \begin{aligned} \rho_1(p_2(x)) &=x^2+\alpha_3x+\alpha_3^2\\ &=\frac{x^3-\alpha_3^3}{x-\alpha_3}=\frac{x^3-2}{x-\alpha_3}\\ \end{aligned} ρ1(p2(x))=x2+α3x+α32=x−α3x3−α33=x−α3x3−2
对于上述映射得到的像, 显然有两个根 α 1 , α 2 \alpha_1,\alpha_2 α1,α2, 所以我们可以得到两个自同构如下:
( α 1 α 2 α 3 α 3 α 1 α 2 ) = ( 132 ) , ( α 1 α 2 α 3 α 3 α 2 α 1 ) = ( 13 ) \begin{pmatrix} \alpha_1&\alpha_2&\alpha_3\\ \alpha_3&\alpha_1&\alpha_2\\ \end{pmatrix}= (132) ,\qquad \begin{pmatrix} \alpha_1&\alpha_2&\alpha_3\\ \alpha_3&\alpha_2&\alpha_1\\ \end{pmatrix}=(13) (α1α3α2α1α3α2)=(132),(α1α3α2α2α3α1)=(13)
同样, 取 ρ 1 \rho_1 ρ1为 ( 1 ) (1) (1)和 ( 2 ) (2) (2),可分别得到: ( 1 ) , ( 23 ) (1),\,(23) (1),(23)和 ( 12 ) , ( 123 ) (12),\,(123) (12),(123).于是, 我们找到了6个自同构, 即 ∣ Aut ( E ) ∣ = 6 |\text{Aut}(E)|=6 ∣Aut(E)∣=6, 且 Aut ( E ) = S 3 \text{Aut}(E)=\mathcal{S}_3 Aut(E)=S3.
思路2: (这里我借鉴一下《代数学基础》这本书中关于如何寻找分裂域的自同构群的方法, 感觉这个方法更加易懂一些.)
由思路1可知, f ( x ) f(x) f(x)在 Q \mathbb{Q} Q上的分裂域为 E = Q ( 2 3 , ω ) E=\mathbb{Q}(\sqrt[3]2,\,\omega) E=Q(32,ω). 于是根据维数公式可以得到:
[ E : Q ] = [ E : Q ( 2 3 ) ] ⋅ [ Q ( 2 3 ) : Q ] = 2 × 3 = 6 [E:\mathbb{Q}]=[E:\mathbb{Q}(\sqrt[3]2)]\cdot[\mathbb{Q}(\sqrt[3]2):\mathbb{Q}]=2\times3=6 [E:Q]=[E:Q(32)]⋅[Q(32):Q]=2×3=6
可以得到 ∣ Aut ( E ) ∣ = 6 |\text{Aut}(E)|=6 ∣Aut(E)∣=6.任取 σ ∈ Aut ( E ) \sigma\in\text{Aut}(E) σ∈Aut(E), σ \sigma σ在 f ( x ) f(x) f(x)的根集上的作用取决于 σ ( 2 3 ) \sigma(\sqrt[3]2) σ(32)和 σ ( ω ) \sigma(\omega) σ(ω).
下面分别来进行讨论:
σ ( ω ) \sigma(\omega) σ(ω)
ω \omega ω在 Q \mathbb{Q} Q上的极小多项式为 x 2 + x + 1 x^2+x+1 x2+x+1, 所以其像为 ω , ω 2 \omega,\,\omega^2 ω,ω2.
σ ( 2 3 ) \sigma(\sqrt[3]2) σ(32)
f ( x ) f(x) f(x)是 2 3 \sqrt[3]2 32在 Q \mathbb{Q} Q上的极小多项式, 所以其像为 2 3 , 2 3 ω , 2 3 ω 2 \sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2 32,32ω,32ω2.
对于 Aut ( E ) \text{Aut}(E) Aut(E)中的元素, 其只可能是上述两种情况的组合, 即下面的 2 × 3 = 6 2\times3=6 2×3=6种对应:
ω ↦ ω , 2 3 ↦ 2 3 ω ↦ ω , 2 3 ↦ 2 3 ω ω ↦ ω , 2 3 ↦ 2 3 ω 2 ω ↦ ω 2 , 2 3 ↦ 2 3 ω ↦ ω 2 , 2 3 ↦ 2 3 ω ω ↦ ω 2 , 2 3 ↦ 2 3 ω 2 \begin{array}{ccc} \omega\mapsto\omega,\sqrt[3]2\mapsto\sqrt[3]2&\omega\mapsto\omega,\sqrt[3]2\mapsto\sqrt[3]2\omega&\omega\mapsto\omega,\,\sqrt[3]2\mapsto\sqrt[3]2\omega^2\\ \omega\mapsto\omega^2,\,\sqrt[3]2\mapsto\sqrt[3]2&\omega\mapsto\omega^2,\,\sqrt[3]2\mapsto\sqrt[3]2\omega&\omega\mapsto\omega^2,\,\sqrt[3]2\mapsto\sqrt[3]2\omega^2\\ \end{array} ω↦ω,32↦32ω↦ω2,32↦32ω↦ω,32↦32ωω↦ω2,32↦32ωω↦ω,32↦32ω2ω↦ω2,32↦32ω2
上面的六组对应关系进行复合后恰好得到了 S 3 \mathcal{S}_3 S3.
注: 上面这个例子虽然在分裂域部分引入, 但是其也可以作为Galois基本定理的一个例子, 其中包含了中间域到正规子群的一一对应, 在之后的部分我们还会提到这个例子.
例2. E = Q ( 2 3 ) , K = Q E=\mathbb{Q}(\sqrt[3]2),\,K=\mathbb{Q} E=Q(32),K=Q. 求分裂域 E E E 的自同构群 Aut ( E ) \text{Aut}(E) Aut(E).
只能找到如下一个自同构
Q ( 2 3 ) → Q ( 2 3 ) a + b 2 3 + c ( 2 3 ) 2 ↦ a + b 2 3 + c ( 2 3 ) 2 \begin{aligned} \mathbb{Q}(\sqrt[3]2)&\to\mathbb{Q}(\sqrt[3]2)\\ a+b\sqrt[3]2+c(\sqrt[3]2)^2&\mapsto a+b\sqrt[3]2+c(\sqrt[3]2)^2 \end{aligned} Q(32)a+b32+c(32)2→Q(32)↦a+b32+c(32)2于是 Aut ( E ) = { ( 1 ) } \text{Aut}(E)=\{(1)\} Aut(E)={(1)}.