代数学笔记3: 分裂域

本文详细探讨了域扩张的分裂域概念,介绍了定义、存在性和唯一性,并通过实例展示了如何求解分裂域及自同构群。通过Q[x]中的3次多项式展开,深入解析了自同构群Aut(E)的构造和计算,涉及自同构群在Galois理论中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前面的话

介绍完域扩张(其实前面写的有点简略了,并没有结合环的部分, 导致叙述起来连贯性没有那么强), 就该来分裂域这部分了, 这里我有一本十分推荐的教材《代数学基础》(张英伯,王恺顺著), 里面对一些定义和定理的阐述非常细致, 也比较适合入门, 大家如果需要资源的话可以私信我.

分裂域引入

关于分裂域部分, 其实分裂域就是前面所述干域(单扩张)的一个推广, 利用分裂域的一些性质可以很方便的得到Galois的基本理论, 以及很多关于方程可解的条件等, 可以说是深入代数学核心思想的一个重要工具.

定义

f ( x ) ∈ F [ x ] f(x)\in F[x] f(x)F[x] n n n次多项式, 若存在 K K K的扩域 L L L, 使得 f ( x ) = c ( x − α 1 ) ⋯ ( x − α n ) f(x)=c(x-\alpha_1)\cdots(x-\alpha_n) f(x)=c(xα1)(xαn), 其中 α i ∈ L \alpha_i\in L αiL, 则称 K ( α 1 ,   ⋯   ,   α n ) K(\alpha_1,\,\cdots,\,\alpha_n) K(α1,,αn) L L L中关于 f f f分裂域.

(其中系数 c c c保证了多项式 f ( x ) f(x) f(x)不是首一多项式时也成立)

从定义就可以看出, 分裂域的构造相当于是在单扩张的基础上, 进行扩域的构造, 以得到 f f f的唯一因子分解.

分裂域的存在唯一性

存在性

如果 f f f为一次多项式, 显然成立;

如果 f f f次数大于1, 假设存在性对 n − 1 n-1 n1次多项式成立. 设在 F [ x ] F[x] F[x]中,
f ( x ) = p ( x ) g ( x ) , f(x)=p(x)g(x), f(x)=p(x)g(x),
其中 p ( x ) p(x) p(x) F F F上的首一不可约多项式.

作干域 F ( α 1 ) F(\alpha_1) F(α1), 使得 α 1 \alpha_1 α1 F F F上的极小多项式为 p ( x ) p(x) p(x), 于是有
f ( α 1 ) = p ( α 1 ) g ( α 1 ) = 0 , f(\alpha_1)=p(\alpha_1)g(\alpha_1)=0, f(α1)=p(α1)g(α1)=0,
因此 f ( x ) f(x) f(x) F ( α 1 ) F(\alpha_1) F(α1)上可以分解为
f ( x ) = ( x − α 1 ) f 1 ( x ) . f(x)=(x-\alpha_1)f_1(x). f(x)=(xα1)f1(x).

由归纳假设, 设 f 1 ( x ) f_1(x) f1(x) F ( α 1 ) F(\alpha_1) F(α1)上的分裂域为 E E E, 那么 f 1 ( x ) f_1(x) f1(x)可以在 E [ x ] E[x] E[x]中分解为 f 1 ( x ) = c ( x − α 2 ) ⋯ ( x − α n ) f_1(x)=c(x-\alpha_2)\cdots(x-\alpha_n) f1(x)=c(xα2)(xαn).于是 f ( x ) f(x) f(x) E [ x ] E[x] E[x]中分解为:
f ( x ) = c ( x − α 1 ) ( x − α 2 ) ⋯ ( x − α n ) . f(x)=c(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_n). f(x)=c(xα1)(xα2)(xαn).
所以 E = F ( α 1 ) ( α 2 , ⋯   , α n ) = F ( α 1 , α 2 , ⋯   , α n ) E=F(\alpha_1)(\alpha_2,\cdots,\alpha_n)=F(\alpha_1,\alpha_2,\cdots,\alpha_n) E=F(α1)(α2,,αn)=F(α1,α2,,αn) f ( x ) f(x) f(x) F F F上的分裂域.

我们可以从证明中还可以得到:
[ F ( α 1 ,   ⋯   ,   α n ) : F ] ⩽ n ! [F(\alpha_1,\,\cdots,\,\alpha_n):F]\leqslant n! [F(α1,,αn):F]n!

求分裂域

f ( x ) = x 3 − 2 ∈ Q [ x ] f(x)=x^3-2\in\mathbb{Q}[x] f(x)=x32Q[x]为有理数域上的3次不可约多项式, 令 ω = − 1 + − 3 2 \omega=\frac{-1+\sqrt{-3}}{2} ω=21+3 , 则
f ( x ) = ( x − 2 3 ) ( x − 2 3 ω ) ( x − 2 3 ω 2 ) , f(x)=(x-\sqrt[3]2)(x-\sqrt[3]2\omega)(x-\sqrt[3]2\omega^2), f(x)=(x32 )(x32 ω)(x32 ω2),
f ( x ) f(x) f(x) C [ x ] \mathbb{C}[x] C[x]中的分解. 求 f ( x ) f(x) f(x) Q \mathbb{Q} Q上的分裂域.

由分解式显然可知分裂域为 Q ( 2 3 , 2 3 ω , 2 3 ω 2 ) = Q ( 2 3 , ω ) \mathbb{Q}(\sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2)=\mathbb{Q}(\sqrt[3]2,\omega) Q(32 ,32 ω,32 ω2)=Q(32 ,ω).

唯一性

只需证一个给定多项式在域 F F F上的分裂域是同构的.

由于这里的严密证明需要用到环同态的一些概念, 在之后的部分我们再来细讲. 这里大概说一下思路:

通过单扩张构造扩域链, 只需找如下的同构映射
ρ : K ( α 1 ,   ⋯   ,   α n ) → K ( β 1 ,   ⋯   ,   β n ) \rho: K(\alpha_1,\,\cdots,\,\alpha_n)\to K(\beta_1,\,\cdots,\,\beta_n) ρ:K(α1,,αn)K(β1,,βn)
以第一个扩域为例, 其上的极小多项式记为
p 1 ( x ) = k 1 + k 2 x + ⋯ + k s x s − 1 p_1(x)=k_1+k_2x+\cdots+k_sx^{s-1} p1(x)=k1+k2x++ksxs1
deg ⁡ ( p ) = s \deg(p)=s deg(p)=s, 且有 p 1 ( α ) = 0 p_1(\alpha)=0 p1(α)=0.通过 ρ \rho ρ作用, 可得到:
ρ ( p 1 ( α ) ) = k 1 + k 2 ρ ( α ) + ⋯ + k s ρ ( α s − 1 ) = 0 \rho(p_1(\alpha))=k_1+k_2\rho(\alpha)+\cdots+k_s\rho(\alpha^{s-1})=0 ρ(p1(α))=k1+k2ρ(α)++ksρ(αs1)=0
即可知 p ( β ) = 0 p(\beta)=0 p(β)=0, β = ρ ( α ) \beta=\rho(\alpha) β=ρ(α) p ( x ) p(x) p(x) E E E中的一个根.

于是可知 p ( x ) p(x) p(x)也为像的极小多项式, 由此, 我们找到了这样一个域同态.

下面介绍关于自同构群的定义:

自同构群

E E E是一个域, 则 E E E的全体自同构的集合关于变幻的合成构成一个群, 称为 E E E的自同构群(automorphism group), 记作 Aut ( E ) \text{Aut}(E) Aut(E).

例子: 求分裂域的自同构群

例1: 设 f ( x ) = x 3 − 2 ∈ Q [ x ] f(x)=x^3-2\in\mathbb{Q}[x] f(x)=x32Q[x]为有理数域上的3次不可约多项式, 令 ω = − 1 + − 3 2 \omega=\frac{-1+\sqrt{-3}}{2} ω=21+3 , 则
f ( x ) = ( x − 2 3 ) ( x − 2 3 ω ) ( x − 2 3 ω 2 ) , f(x)=(x-\sqrt[3]2)(x-\sqrt[3]2\omega)(x-\sqrt[3]2\omega^2), f(x)=(x32 )(x32 ω)(x32 ω2),
f ( x ) f(x) f(x) C [ x ] \mathbb{C}[x] C[x]中的分解. 令 E = Q ( 2 3 , 2 3 ω , 2 3 ω 2 ) E=\mathbb{Q}(\sqrt[3]2, \sqrt[3]2\omega, \sqrt[3]2\omega^2) E=Q(32 ,32 ω,32 ω2), 试找出 E E E的自同构群 Aut ( E ) \text{Aut}(E) Aut(E)中的元素.

只要找 E → E E\to E EE的同构映射, 对于 E E E来说, 首先要找到其扩域是如何生成的, 于是, 作扩域链如下
Q ⊂ Q ( 2 3 ) ⊂ Q ( 2 3 , 2 3 ω ) ⊂ Q ( 2 3 , 2 3 ω , 2 3 ω 2 ) = E = Q ( 2 3 , ω ) \mathbb{Q}\subset\mathbb{Q}(\sqrt[3]2)\subset\mathbb{Q}(\sqrt[3]2, \sqrt[3]2\omega)\subset\mathbb{Q}(\sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2)=E=\mathbb{Q}(\sqrt[3]2,\omega) QQ(32 )Q(32 ,32 ω)Q(32 ,32 ω,32 ω2)=E=Q(32 ,ω)
(最后一个等号是因为最后一个根可以由前两根表示)

为方便起见. 我们用 α 1 ,   α 2 ,   α 3 \alpha_1,\,\alpha_2,\,\alpha_3 α1,α2,α3分别表示三个根 2 3 , 2 3 ω , 2 3 ω 2 \sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2 32 ,32 ω,32 ω2, 则


思路1: (通过极小多项式变换来找自同构)

  • 对于第一个域 Q \mathbb{Q} Q, 很显然其到 E E E的同构映射只有 i d id id(identity,恒同映射).

  • 对于第二个域 Q ( α 1 ) \mathbb{Q}(\alpha_1) Q(α1), 设有一映射 ρ 1 : Q ( α 1 ) → E \rho_1:\mathbb{Q}(\alpha_1)\to E ρ1:Q(α1)E 满足条件, 则对于 ρ 1 \rho_1 ρ1的选取, 有如下三种选择:
    ρ 1 : { α 1 ↦ α 1 ( 1 ) α 1 ↦ α 2 ( 2 ) α 1 ↦ α 3 ( 3 ) \rho_1:\begin{cases} \alpha_1\mapsto \alpha_1\qquad(1)\\ \alpha_1\mapsto \alpha_2\qquad(2)\\ \alpha_1\mapsto \alpha_3\qquad(3)\\ \end{cases} ρ1:α1α1(1)α1α2(2)α1α3(3)
    p 1 ( x ) = x 3 − 2 ∈ Q [ x ] p_1(x)=x^3-2\in \mathbb{Q}[x] p1(x)=x32Q[x] Q \mathbb{Q} Q上的极小多项式, 其扩域 Q ( α 1 ) \mathbb{Q}(\alpha_1) Q(α1)下的极小多项式为
    p 2 ( x ) = x 2 + α 1 x + α 1 2 ∈ Q [ x ] , p_2(x)=x^2+\alpha_1x+\alpha_1^2\in\mathbb{Q}[x], p2(x)=x2+α1x+α12Q[x],
    显然 p 2 ( x ) p_2(x) p2(x)在复数域中有两根 α 2 , α 3 \alpha_2,\alpha_3 α2,α3.

    这里以 ( 3 ) (3) (3)为例, 将 ρ 1 \rho_1 ρ1作用于该多项式, 即可得到:
    ρ 1 ( p 2 ( x ) ) = x 2 + α 3 x + α 3 2 = x 3 − α 3 3 x − α 3 = x 3 − 2 x − α 3 \begin{aligned} \rho_1(p_2(x)) &=x^2+\alpha_3x+\alpha_3^2\\ &=\frac{x^3-\alpha_3^3}{x-\alpha_3}=\frac{x^3-2}{x-\alpha_3}\\ \end{aligned} ρ1(p2(x))=x2+α3x+α32=xα3x3α33=xα3x32
    对于上述映射得到的像, 显然有两个根 α 1 , α 2 \alpha_1,\alpha_2 α1,α2, 所以我们可以得到两个自同构如下:
    ( α 1 α 2 α 3 α 3 α 1 α 2 ) = ( 132 ) , ( α 1 α 2 α 3 α 3 α 2 α 1 ) = ( 13 ) \begin{pmatrix} \alpha_1&\alpha_2&\alpha_3\\ \alpha_3&\alpha_1&\alpha_2\\ \end{pmatrix}= (132) ,\qquad \begin{pmatrix} \alpha_1&\alpha_2&\alpha_3\\ \alpha_3&\alpha_2&\alpha_1\\ \end{pmatrix}=(13) (α1α3α2α1α3α2)=(132),(α1α3α2α2α3α1)=(13)
    同样, 取 ρ 1 \rho_1 ρ1 ( 1 ) (1) (1) ( 2 ) (2) (2),可分别得到: ( 1 ) ,   ( 23 ) (1),\,(23) (1),(23) ( 12 ) ,   ( 123 ) (12),\,(123) (12),(123).

    于是, 我们找到了6个自同构, 即 ∣ Aut ( E ) ∣ = 6 |\text{Aut}(E)|=6 Aut(E)=6, 且 Aut ( E ) = S 3 \text{Aut}(E)=\mathcal{S}_3 Aut(E)=S3.


思路2: (这里我借鉴一下《代数学基础》这本书中关于如何寻找分裂域的自同构群的方法, 感觉这个方法更加易懂一些.)

由思路1可知, f ( x ) f(x) f(x) Q \mathbb{Q} Q上的分裂域为 E = Q ( 2 3 ,   ω ) E=\mathbb{Q}(\sqrt[3]2,\,\omega) E=Q(32 ,ω). 于是根据维数公式可以得到:
[ E : Q ] = [ E : Q ( 2 3 ) ] ⋅ [ Q ( 2 3 ) : Q ] = 2 × 3 = 6 [E:\mathbb{Q}]=[E:\mathbb{Q}(\sqrt[3]2)]\cdot[\mathbb{Q}(\sqrt[3]2):\mathbb{Q}]=2\times3=6 [E:Q]=[E:Q(32 )][Q(32 ):Q]=2×3=6
可以得到 ∣ Aut ( E ) ∣ = 6 |\text{Aut}(E)|=6 Aut(E)=6.

任取 σ ∈ Aut ( E ) \sigma\in\text{Aut}(E) σAut(E), σ \sigma σ f ( x ) f(x) f(x)的根集上的作用取决于 σ ( 2 3 ) \sigma(\sqrt[3]2) σ(32 ) σ ( ω ) \sigma(\omega) σ(ω).

下面分别来进行讨论:

  • σ ( ω ) \sigma(\omega) σ(ω)

    ω \omega ω Q \mathbb{Q} Q上的极小多项式为 x 2 + x + 1 x^2+x+1 x2+x+1, 所以其像为 ω ,   ω 2 \omega,\,\omega^2 ω,ω2.

  • σ ( 2 3 ) \sigma(\sqrt[3]2) σ(32 )

    f ( x ) f(x) f(x) 2 3 \sqrt[3]2 32 Q \mathbb{Q} Q上的极小多项式, 所以其像为 2 3 , 2 3 ω , 2 3 ω 2 \sqrt[3]2,\sqrt[3]2\omega, \sqrt[3]2\omega^2 32 ,32 ω,32 ω2.

对于 Aut ( E ) \text{Aut}(E) Aut(E)中的元素, 其只可能是上述两种情况的组合, 即下面的 2 × 3 = 6 2\times3=6 2×3=6种对应:
ω ↦ ω , 2 3 ↦ 2 3 ω ↦ ω , 2 3 ↦ 2 3 ω ω ↦ ω ,   2 3 ↦ 2 3 ω 2 ω ↦ ω 2 ,   2 3 ↦ 2 3 ω ↦ ω 2 ,   2 3 ↦ 2 3 ω ω ↦ ω 2 ,   2 3 ↦ 2 3 ω 2 \begin{array}{ccc} \omega\mapsto\omega,\sqrt[3]2\mapsto\sqrt[3]2&\omega\mapsto\omega,\sqrt[3]2\mapsto\sqrt[3]2\omega&\omega\mapsto\omega,\,\sqrt[3]2\mapsto\sqrt[3]2\omega^2\\ \omega\mapsto\omega^2,\,\sqrt[3]2\mapsto\sqrt[3]2&\omega\mapsto\omega^2,\,\sqrt[3]2\mapsto\sqrt[3]2\omega&\omega\mapsto\omega^2,\,\sqrt[3]2\mapsto\sqrt[3]2\omega^2\\ \end{array} ωω,32 32 ωω2,32 32 ωω,32 32 ωωω2,32 32 ωωω,32 32 ω2ωω2,32 32 ω2
上面的六组对应关系进行复合后恰好得到了 S 3 \mathcal{S}_3 S3.

注: 上面这个例子虽然在分裂域部分引入, 但是其也可以作为Galois基本定理的一个例子, 其中包含了中间域到正规子群的一一对应, 在之后的部分我们还会提到这个例子.

例2. E = Q ( 2 3 ) ,   K = Q E=\mathbb{Q}(\sqrt[3]2),\,K=\mathbb{Q} E=Q(32 ),K=Q. 求分裂域 E E E 的自同构群 Aut ( E ) \text{Aut}(E) Aut(E).

只能找到如下一个自同构
Q ( 2 3 ) → Q ( 2 3 ) a + b 2 3 + c ( 2 3 ) 2 ↦ a + b 2 3 + c ( 2 3 ) 2 \begin{aligned} \mathbb{Q}(\sqrt[3]2)&\to\mathbb{Q}(\sqrt[3]2)\\ a+b\sqrt[3]2+c(\sqrt[3]2)^2&\mapsto a+b\sqrt[3]2+c(\sqrt[3]2)^2 \end{aligned} Q(32 )a+b32 +c(32 )2Q(32 )a+b32 +c(32 )2

于是 Aut ( E ) = { ( 1 ) } \text{Aut}(E)=\{(1)\} Aut(E)={(1)}.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值