代数学笔记8: Sylow定理

文章介绍了Sylow定理的应用,指出15阶群必定包含3阶和5阶子群且唯一,通过计算得出该群实际上是两个子群的直积,从而确定其为循环群。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sylow定理

∣ G ∣ = p r ⋅ m |G|=p^r\cdot m G=prm, ( m , p ) = 1 (m,p)=1 (m,p)=1, 则 G G G中必有 p r p^r pr阶子群.

证明:

应用

例子: 15阶群必定是循环群.

因为 15 = 3 × 5 15=3\times 5 15=3×5, 所以15阶群有 3 3 3阶群或 5 5 5阶群, 设3阶群有 n 3 n_3 n3个, 5阶群有 n 5 n_5 n5个, 由Sylow定理:

  • n 3 ≡ 1 ( m o d 3 ) n_3\equiv 1\pmod3 n31(mod3), n 3 ∣ 15 n_3|15 n3∣15, ⇒ n 3 = 1 \Rightarrow n_3=1 n3=1.
  • n 5 ≡ 1 ( m o d 5 ) n_5\equiv1\pmod5 n51(mod5), n 5 ∣ 15 n_5|15 n5∣15, ⇒ n 5 = 1 \Rightarrow n_5=1 n5=1.

于是 G G G是15阶群, 必有唯一的3阶群 H 1 H_1 H1, 5阶群 H 2 H_2 H2, 并且

  • H 1 , H 2 ⊴ G H_1,H_2\unlhd G H1,H2G, (由于Sylow-p群只有一个, 所以正规)

  • H 1 H 2 = G H_1H_2=G H1H2=G, (通过阶数得到).

  • H 1 ∩ H 2 = { e } H_1\cap H_2=\{e\} H1H2={e}.( H 1 H_1 H1只有单位元以及3阶元, H 2 H_2 H2只有单位元以及5阶元, )

由以上三条, 得到 G ≅ H 1 × H 2 ≅ Z / 15 Z G\cong H_1\times H_2\cong \mathbb{Z}/15\mathbb{Z} GH1×H2Z/15Z. (循环群必交换)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值