YOLOv8模型训练参数详细解析

yolov8的目标检测模型训练参数该如何设置。这篇文章对其相关训练参数和使用方法进行了详细说明。

YOLOv8模型训练代码

我们常用的YOLOv8目标检测模型训练时使用的代码如下:

from ultralytics import YOLO
# 加载官方预训练模型
model = YOLO("yolov8n.pt")  
# 模型训练
results = model.train(data="data.yaml", epochs=100, batch=4)

模型大小选择

model = YOLO("yolov8n.pt")表示使用的是v8n模型来训练。如果想使用其他大小的模型,只需要把n改为其他大小的对应字母即可。例如:

model = YOLO("yolov8s.pt")
model = YOLO("yolov8m.pt")
model = YOLO("yolov8l.pt")
model = YOLO("yolov8x.pt")

不同模型参数大小如下,v8n是参数量最小的模型。一般情况下,模型越大,最终模型的性能效果也会越好,但是训练效率会有所下降。可根据自己实际需求选择相应的模型大小进行训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值