YOLOv8模型参数详解
-
task
:任务类型,通常为 detect(检测)。 -
mode
:模式,train 表示训练模式。 -
model
:模型配置文件的路径,指定了 YOLOv8 模型的结构。 -
data
: 数据集配置文件的路径,包含了训练集和验证集的信息。 -
epochs
:训练的轮数。 -
patience
:早期停止的耐心值,表示在没有进一步改进后多少轮后停止训练。 -
batch
:批处理大小,即每次前向和后向传播使用的样本数。 -
imgsz
:输入图像的大小。 -
save
:是否保存模型权重。 -
save_period
:保存模型权重的周期,-1 表示只在训练结束时保存。 -
cache: 是否缓存图像数据以加速训练。
-
device
:训练的设备,如 GPU 的 ID。 -
workers: 数据加载的工作进程数。
-
project
:保存运行结果的目录。 -
name
:实验的名称。 -
exist_ok: 如果项目目录已存在,是否覆盖。
-
pretrained: 是否使用预训练权重。
-
optimizer
:优化器类型,auto 表示自动选择。 -
verbose: 是否输出详细信息。
-
seed: 随机数种子,用于可复现性。
-
deterministic: 是否使用确定性算法以获取完全可复现的结果。
-
single_cls
:是否进行单类别训练。 -
rect: 是否使用矩形训练(而非正方形)。
-
cos_lr: 是否使用余弦退火学习率调度器。
-
close_mosaic: 在多少轮后关闭马赛克增强。
-
resume
:是否从最后一个检查点恢复训练。 -
amp: 是否使用自动混合精度训练。
-
fraction: 用于训练的子集比例。
-
profile: 是否分析模型的性能。
-
freeze: 冻结模型的哪些层不进行训练,null 表示不冻结任何层。
-
overlap_mask: 在马赛克增强中是否使用重叠掩码。
-
mask_ratio: 马赛克增强的掩码比例。
-
dropout
:Dropout 的比率,用于防止过拟合。 -
val
:是否在训练过程中进行验证。 -
split
:数据分割方式,如 val 表示使用验证集进行验证。 -
save_json: 是否保存 JSON 格式的检测结果。
-
save_hybrid: 是否保存混合精度的模型。
-
conf: 置信度阈值,null 可能表示使用默认值或不在此处指定。但在实际应用中,通常建议明确设置此值。如果为 null,请查阅文档或源代码以了解默认值是多少。
-
iou: 非极大值抑制(NMS)时的 IoU 阈值。
-
max_det: 每张图像的最大检测数量。
-
half: 是否使用半精度浮点数(FP16)。
-
dnn: 是否使用深度神经网络(DNN)模块进行加速(特定于某些硬件)。
-
plots: 是否绘制损失和指标的图表。
-
source: 数据源,如果为 null 则使用配置文件中的数据集路径。
-
show: 是否显示图像和检测结果。
-
save_txt: 是否保存文本格式的检测结果。
-
save_conf: 是否保存每个检测的置信度得分。
-
save_crop: 是否保存裁剪后的检测图像。
-
show_labels: 在显示时是否显示类别标签。
-
show_conf: 在显示时是否显示置信度得分。
-
vid_stride: 视频流处理时的步长。
-
stream_buffer: 视频流处理时的缓冲区大小或类型。
-
line_width: 绘制边界框时的线宽。如果为 null,则可能使用默认值。
-
visualize: 是否可视化训练过程或结果。
-
visualize: 是否可视化训练过程。如果为 true,则会在训练时显示图像和标注。
-
augment
:是否进行数据增强。数据增强是一种提高模型泛化能力的方法,通过对原始图像进行变换来生成新的训练样本。 -
agnostic_nms: 是否使用类别无关的 NMS (非极大值抑制)。传统的 NMS 是基于类别的,这意味着它会独立地对每个类别的检测结果进行抑制。而类别无关的 NMS 则会考虑所有类别的检测结果。
-
classes: 模型的类别数。对于特定的数据集,需要指定检测目标的类别数量。
-
retina_masks: 是否使用 RetinaNet 风格的掩码。RetinaNet 是一个用于目标检测的模型,但它也支持实例分割任务,此参数可能与实例分割有关。
-
boxes: 是否检测边界框。通常,目标检测任务都会输出边界框,但某些设置可能只需要其他输出(如关键点或掩码)。
-
format: 输出模型的格式。在这里,torchscript 意味着输出为 PyTorch 的 TorchScript 格式,这可以用于部署。
-
keras: 是否使用 Keras 格式。Keras 是一个流行的深度学习框架,但 YOLOv8 主要基于 PyTorch,所以此参数可能表示某种兼容性或转换功能。
-
optimize: 是否优化模型。这可能涉及到模型的量化、剪枝等优化策略。
int8: 是否使用 8 位整数 (INT8) 量化。量化是一种减少模型大小和加速推理的技术,但它可能会稍微降低精度。 -
dynamic: 是否使用动态输入大小。某些模型可以接受任意大小的输入,而不需要重新调整图像大小。
-
simplify: 是否简化模型结构。简化可能有助于提高推理速度或减少模型大小,但也可能影响精度。
-
opset: 操作集版本,与模型导出和部署有关。
-
workspace: 与某些操作(如卷积)相关的工作空间大小。这通常与 GPU 内存使用有关。
-
nms: 是否在推理时使用 NMS (非极大值抑制)。NMS 是目标检测中常用的后处理步骤,用于去除重叠的检测结果。
接下来的参数与训练相关: -
lr0
:初始学习率。 -
lrf
:最终学习率或学习率衰减到的值。 -
momentum
:动量值,用于优化器的动量更新。 -
weight_decay
:权重衰减系数,用于正则化模型权重。 -
warmup_epochs
:学习率预热期数。在这段时间内,学习率会从较小的值线性增加到 lr0。 -
warmup_momentum: 预热期的动量值。
-
warmup_bias_lr: 预热期偏置的学习率。
接下来的参数与损失函数的权重有关:
box, cls, dfl, pose, kobj, label_smoothing
:这些是损失函数中不同部分的权重或超参数。例如,box 是边界框损失的权重,cls 是分类损失的权重等。
接下来的参数与数据增强有关:
-
nbs, hsv_h, hsv_s, hsv_v, degrees, translate, scale, shear, perspective, flipud, fliplr, mosaic, mixup, copy_paste
:这些参数控制不同的数据增强方法及其强度。例如,hsv_h 控制 HSV 色彩空间中色调的变化范围,translate 控制图像平移的范围等。 -
cfg
:配置文件的路径或内容,通常包含模型的结构和超参数设置。 -
tracker
:跟踪器配置文件的路径,可能与目标跟踪任务有关。 -
save_dir
:保存训练结果(如权重、日志等)的目录路径。