多模态语义分割基础

语义分割的目标:是将一个场景分割成几个有意义的部分,通常是用语义标记图像中的每个像素(pixel-level semantic segmentation),或者同时检测对象并进行逐像素标记(instance-level semantic segmentation)。
最近,为了统一pixel-level semantic segmentation和instance-level semantic segmentation,提出了全景分割(panoptic segmentation)。

1 多传感模式的特点

  1. 视觉和热成像相机:视觉(visual camera)和热成像相机(thermal camera)捕捉到的图像可以提供车辆周围环境的详细纹理信息。视觉相机对光线和天气条件很敏感;热成像相机对白天/夜间的变化更敏感,因为它们能探测到与物体热量有关的红外辐射。然而,这两种类型的相机都不能直接提供深度信息。
  2. LIDAR(Light Detection And Ranging):以三维点的形式给出周围环境的精确深度信息。LIDAR是主动摄影,它测量以一定频率发射的激光束的反射。激光雷达对不同的照明条件受影响较小,而且比视觉相机更少受到各种天气条件的影响,如雾和雨。典型的激光雷达无法捕捉到物体的精细纹理,且当物体距离较远时,激光雷达的点会变得稀疏。
  3. Radar(无线电探测和测距):Radar发射被障碍物反射的电磁波,测量信号运行时间,通过多普勒效应估计物体的径向速度、距离和角度。它们在各种光照和天气条件下都很鲁棒,但由于分辨率低,通过雷达对物体进行分类非常具有挑战性。radar在自适应巡航控制和交通拥堵辅助系统中有着广泛的应用。毫米波(mmWave)是一种短波雷达技术。

2 深度语义分割

深度语义分割的数据集
Cityscape
### Swin-Transformer在多模态语义分割中的应用 Swin Transformer 结合了卷积神经网络(CNN)和变换器(Transformer)的优点,在处理高分辨率图像时表现出色[^1]。对于多模态语义分割任务,Swin Transformer 的优势在于其能够有效捕捉局部细节的同时保持全局上下文理解能力。 #### 方法概述 为了实现基于 Swin Transformer 的多模态语义分割模型: 1. **输入融合**:接受来自不同传感器的数据作为输入,比如RGB图像、深度图或其他形式的感知数据。这些不同的模态可以在早期阶段进行级联或者并行处理后再聚合。 2. **特征提取**:采用 Swin Transformer 架构逐层抽取各模态下的空间特征表示。由于 Swin Transformer 使用分层结构逐步增大感受野范围,并通过窗口内的自注意机制降低计算成本,这使得它非常适合用于复杂场景下精确的目标识别与分类[^3]。 3. **跨模态交互建模**:引入额外模块促进不同源之间信息交流,例如交叉注意力机制允许一个模态关注另一个模态的关键区域;也可以考虑使用联合嵌入空间映射技术使多种类型的表征更加一致地协同工作。 4. **解码重建**:经过编码后的高层抽象特征需经由上采样路径恢复至原始尺寸,最终输出像素级别的类别预测结果。此过程中可借鉴 U-Net 类型的设计思路,即让低级别细粒度线索指导高级别语义解释完成精细化定位。 5. **损失函数优化**:针对特定应用场景定制合适的评价指标体系,如交并比(IoU),Dice系数等,并据此调整训练策略以获得更好的泛化性能。 #### 参考论文及代码资源 目前已有研究者尝试将 Swin Transformer 应用于多模态分析领域,部分成果已公开发表并开源其实验代码供后续开发者参考学习。具体来说,“Align before Fuse: Vision and Language Representation Learning with Momentum Distillation” 提出了新颖的方法论框架可用于启发如何高效整合视觉与其他感官信号之间的关联关系[^2]。而官方 GitHub 上也提供了 PyTorch 版本的基础实现库 `timm` 和 `mmsegmentation` ,后者特别专注于各种语义分割算法的研究开发,其中就包含了对 Swin Transformer 支持的良好接口封装[^5]。 ```bash git clone https://github.com/open-mmlab/mmsegmentation.git cd mmsegmentation pip install -r requirements/build.txt pip install -v -e . ``` 上述命令可以帮助快速搭建起实验环境,进一步探索基于 Swin Transformer 的多模态语义分割解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值