多模态语义分割基础

语义分割的目标:是将一个场景分割成几个有意义的部分,通常是用语义标记图像中的每个像素(pixel-level semantic segmentation),或者同时检测对象并进行逐像素标记(instance-level semantic segmentation)。
最近,为了统一pixel-level semantic segmentation和instance-level semantic segmentation,提出了全景分割(panoptic segmentation)。

1 多传感模式的特点

  1. 视觉和热成像相机:视觉(visual camera)和热成像相机(thermal camera)捕捉到的图像可以提供车辆周围环境的详细纹理信息。视觉相机对光线和天气条件很敏感;热成像相机对白天/夜间的变化更敏感,因为它们能探测到与物体热量有关的红外辐射。然而,这两种类型的相机都不能直接提供深度信息。
  2. LIDAR(Light Detection And Ranging):以三维点的形式给出周围环境的精确深度信息。LIDAR是主动摄影,它测量以一定频率发射的激光束的反射。激光雷达对不同的照明条件受影响较小,而且比视觉相机更少受到各种天气条件的影响,如雾和雨。典型的激光雷达无法捕捉到物体的精细纹理,且当物体距离较远时,激光雷达的点会变得稀疏。
  3. Radar(无线电探测和测距):Radar发射被障碍物反射的电磁波,测量信号运行时间,通过多普勒效应估计物体的径向速度、距离和角度。它们在各种光照和天气条件下都很鲁棒,但由于分辨率低,通过雷达对物体进行分类非常具有挑战性。radar在自适应巡航控制和交通拥堵辅助系统中有着广泛的应用。毫米波(mmWave)是一种短波雷达技术。

2 深度语义分割

深度语义分割的数据集
Cityscape
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值