Python手册(Machine Learning)--statsmodels(Graphics)


Python手册(Machine Learning)–statsmodels(GettingStarted)
Python手册(Machine Learning)–statsmodels(Regression)
Python手册(Machine Learning)–statsmodels(ANOVA)
Python手册(Machine Learning)–statsmodels(Tables+Imputation)
Python手册(Machine Learning)–statsmodels(MultivariateStatistics)
Python手册(Machine Learning)–statsmodels(TimeSeries)
Python手册(Machine Learning)–statsmodels(Survival)
Python手册(Machine Learning)–statsmodels(Graphics)


拟合图

Goodness of Fit Plots拟合图
gofplots.qqplotQQ图。
gofplots.qqline绘制一个qqplot的参考线
gofplots.qqplot_2samples两个样本分位数的QQ图
gofplots.ProbPlot自定义QQ图,PP图或概率图
>>> import statsmodels.api as sm
>>> from matplotlib import pyplot as plt
>>> import scipy.stats as stats
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> mod_fit = sm.OLS(data.endog, data.exog).fit()
>>> res = mod_fit.resid # residuals
>>> fig = sm.qqplot(res, stats.t, fit=True, line='45')
>>> plt.show()

qq

箱线图

Boxplots箱线图
boxplots.violinplot在数据序列中为每个数据集制作小提琴图
boxplots.beanplot在数据序列中创建每个数据集的bean图
>>> data = sm.datasets.anes96.load_pandas()
>>> party_ID = np.arange(7)
>>> labels = ["Strong Democrat", "Weak Democrat", "Independent-Democrat",
...           "Independent-Indpendent", "Independent-Republican",
...           "Weak Republican", "Strong Republican"]
>>> plt.rcParams['figure.subplot.bottom'] = 0.23  # keep labels visible
>>> age = [data.exog['age'][data.endog == id] for id in party_ID]
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> sm.graphics.violinplot(age, ax=ax, labels=labels,
...                        plot_opts={'cutoff_val':5, 'cutoff_type':'abs',
...                                   'label_fontsize':'small',
...                                   'label_rotation':30})
>>> ax.set_xlabel("Party identification of respondent.")
>>> ax.set_ylabel("Age")
>>> plt.show()

violin

相关图

Correlation Plots相关图
correlation.plot_corr相关图
correlation.plot_corr_grid创建相关图的网格
plot_grids.scatter_ellipse用置信度椭圆创建一个散点图网格
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> import statsmodels.graphics.api as smg
>>> hie_data = sm.datasets.randhie.load_pandas()
>>> corr_matrix = np.corrcoef(hie_data.data.T)
>>> smg.plot_corr(corr_matrix, xnames=hie_data.names)
>>> plt.show()

corr

函数图

Functional Plots函数图
functional.hdrboxplot高密度区域箱线图
functional.fboxplot绘制函数箱线图
functional.rainbowplot为一组曲线创建一个彩虹图
functional.banddepth计算一组函数曲线的带深度
>>> import matplotlib.pyplot as plt
>>> import statsmodels.api as sm
>>> data = sm.datasets.elnino.load()
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> res = sm.graphics.hdrboxplot(data.raw_data[:, 1:],
...                              labels=data.raw_data[:, 0].astype(int),
...                              ax=ax)
>>> ax.set_xlabel("Month of the year")
>>> ax.set_ylabel("Sea surface temperature (C)")
>>> ax.set_xticks(np.arange(13, step=3) - 1)
>>> ax.set_xticklabels(["", "Mar", "Jun", "Sep", "Dec"])
>>> ax.set_xlim([-0.2, 11.2])
>>> plt.show()

fp

回归图

Regression Plots回归图
regressionplots.plot_fitPlot fit against one regressor
regressionplots.plot_regress_exog针对一个回归模型绘制回归结果。
regressionplots.plot_partregress绘制对于单个回归模型的部分回归。
regressionplots.plot_ccpr将CCPR与一位回归模型对比。
regressionplots.abline_plot绘制斜线
regressionplots.influence_plot回归影响
regressionplots.plot_leverage_resid2Plots leverage statistics vs

时间序列图

Time Series Plots时间序列图
tsaplots.plot_acf绘制自相关函数
tsaplots.plot_pacf绘制部分自相关函数
tsaplots.month_plot每月数据的季节性
tsaplots.quarter_plot季度数据的季节性

其他

Other Plots其他
factorplots.interaction_plot对每个因子水平的交互作用图
mosaicplot.mosaic马赛克图
agreement.mean_diff_plotTukey’s Mean Difference Plot
  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值