近世代数--子环--怎么判断是不是子环?

本文介绍了近世代数中的子环概念,包括环的基本性质(交换律、结合律、分配律)以及子环的定义和判定条件。子环需满足加法子群和乘法封闭性。通过证明和举例,阐述了子环的存在性和唯一性,如整数环的倍数子环。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近世代数--子环--怎么判断是不是子环?

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

  • 环ring ( R , + , ⋅ ) , ∀ a , b , c ∈ R (R,+,·),\forall a,b,c\in R (R,+,),a,b,cR

    • R 1 R1 R1 “ + ” “+” +满足交换律, a + b = b + a a+b=b+a a+b=b+a
    • R 2 R2 R2 “ ⋅ ” “·” 满足结合律, a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a·(b·c)=(a·b)·c a(bc)=(ab)c
    • R 3 R3 R3 “ + ” “ ⋅ ” “+”“·” +满足分配律, a ⋅ ( b + c ) = a ⋅ b + a ⋅ c , ( b + c ) ⋅ a = b ⋅ a + c ⋅ a a·(b+c)=a·b+a·c,(b+c)·a=b·a+c·a a(b+c)=ab+ac,(b+c)a=ba+ca
  • 子环subring:设 ( R , + , ⋅ ) (R,+,·) (R,+,)是一个环, S S S R R R的一个非空子集, S ⊂ R , S\subset R, SR,如果 S S S关于 R R R的运算构成环(满足 R 1 、 R 2 、 R 3 R1、R2、R3 R1R2R3),则称 S S S R R R的子环,记作 S < R S<R S<R

  • 子环的充分必要条件

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值