近世代数--子环--怎么判断是不是子环?

近世代数--子环--怎么判断是不是子环?

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

  • 环ring ( R , + , ⋅ ) , ∀ a , b , c ∈ R (R,+,·),\forall a,b,c\in R (R,+,),a,b,cR

    • R 1 R1 R1 “ + ” “+” +满足交换律, a + b = b + a a+b=b+a a+b=b+a
    • R 2 R2 R2 “ ⋅ ” “·” 满足结合律, a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a·(b·c)=(a·b)·c a(bc)=(ab)c
    • R 3 R3 R3 “ + ” “ ⋅ ” “+”“·” +满足分配律, a ⋅ ( b + c ) = a ⋅ b + a ⋅ c , ( b + c ) ⋅ a = b ⋅ a + c ⋅ a a·(b+c)=a·b+a·c,(b+c)·a=b·a+c·a a(b+c)=ab+ac,(b+c)a=ba+ca
  • 子环subring:设 ( R , + , ⋅ ) (R,+,·) (R,+,)是一个环, S S S R R R的一个非空子集, S ⊂ R , S\subset R, SR,如果 S S S关于 R R R的运算构成环(满足 R 1 、 R 2 、 R 3 R1、R2、R3 R1R2R3),则称 S S S R R R的子环,记作 S < R S<R S<R

  • 子环的充分必要条件 ( R , + , ⋅ ) (R,+,·) (R,+,)是一个环, S ⊂ R S\subset R SR S S S R R R的子环的充分必要条件:

    • (1) ( S , + ) (S,+) (S,+) ( R , + ) (R,+) (R,+)的加法子群; ↔ S \leftrightarrow S S关于 R R R减法封闭,即 ∀ a , b ∈ S , a − b ∈ S \forall a,b\in S,a-b\in S a,bS,abS
    • (2) S S S关于 R R R乘法封闭,即 ∀ a , b ∈ S , a b ∈ S \forall a,b\in S,ab\in S a,bS,abS
      证明:
      • S S S R R R的子环 → ( 1 ) ( 2 ) \rightarrow (1)(2) (1)(2)
        ( S , + , ⋅ ) (S,+,·) (S,+,)是环 → ( S , + ) \rightarrow (S,+) (S,+)是群, S S S关于乘法 ⋅ · 封闭。
        又因为 S < R S<R S<R,所以易得 ( 1 ) ( 2 ) (1)(2) (1)(2)
      • ( 1 ) ( 2 ) → S (1)(2)\rightarrow S (1)(2)S R R R的子环:
        因为 R 1 R1 R1:环上的加法具有交换律,所以对于环上的子群的元素做加法运算,也满足交换律;即环上的加法子群 ( S , + ) (S,+) (S,+)关于加法构成交换群,满足 R 1 R1 R1
        R R R满足 R 2 R2 R2结合律、 R 3 R3 R3分配律, S ⊂ R S\subset R SR S S S的运算就是 R R R的运算,所以 S S S也满足 R 2 、 R 3 R2、R3 R2R3
  • 子环例子 I I I Z Z Z的子环,证明:存在唯一非负整数 d d d,使 I = d Z = { d z ∣ z ∈ Z } I=dZ=\{dz|z\in Z\} I=dZ={dzzZ}

    • 存在性:
      • 如果 I = { 0 } , I=\{0\}, I={0}那么 d = 0 , I = d Z d=0,I=dZ d=0,I=dZ
      • i ≠ { 0 } , i\neq \{0\}, i={0}, z > 0 , z>0, z>0,使 z ∈ I , z\in I, zI, d = m i n { z ∈ I , z > 0 } d=min\{z\in I,z>0\} d=min{zI,z>0},那么有 d ∈ I , d > 0 d\in I,d>0 dI,d>0
        既然 d ∈ I , d\in I, dI,环满足加法封闭性可知, d Z ⊆ I dZ\subseteq I dZI。现在只要证明 d Z = I dZ=I dZ=I,即 ∀ z ∈ I , \forall z\in I, zI,都可以写成 z = d q , q ∈ Z z=dq,q\in Z z=dq,qZ的形式。
        假设 ∀ z ∈ I , z = d q + r , d > r \forall z\in I,z=dq+r,d>r zI,z=dq+r,d>r,那么 r = z − d q ∈ I , r=z-dq\in I, r=zdqI,又因为 d = m i n { z ∈ I , z > 0 } d=min\{z\in I,z>0\} d=min{zI,z>0},所以 r = 0 → z = d q → d Z = I . r=0\rightarrow z=dq\rightarrow dZ=I. r=0z=dqdZ=I.
    • 唯一性: 假设 I = d 1 Z = d 2 Z , d 1 ≥ 0 , d 2 ≥ 0 I=d_1Z=d_2Z,d_1\ge 0,d_2\ge 0 I=d1Z=d2Z,d10,d20
      • 如果 d 1 = 0 d_1=0 d1=0,那么 I = { 0 } I=\{0\} I={0},所以 d 2 = 0 → d 1 = d 2 d_2=0\rightarrow d_1=d_2 d2=0d1=d2
      • 如果 d 1 > 0 d_1>0 d1>0,那么 d 2 > 0 d_2>0 d2>0。因为 d 1 ∈ I → d 1 ∈ d 2 Z → d 2 ∣ d 1 d_1\in I\rightarrow d_1\in d_2Z\rightarrow d_2\mid d_1 d1Id1d2Zd2d1,同理 d 1 ∣ d 2 → d 1 = ± d 2 d_1\mid d_2\rightarrow d_1=\pm d_2 d1d2d1=±d2,又 d 1 > 0 , d 2 > 0 , d_1>0,d_2>0, d1>0,d2>0所以 d 1 = d 2 d_1=d_2 d1=d2
  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值