近世代数--子环--怎么判断是不是子环?
博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。
-
环ring: ( R , + , ⋅ ) , ∀ a , b , c ∈ R (R,+,·),\forall a,b,c\in R (R,+,⋅),∀a,b,c∈R
- R 1 R1 R1: “ + ” “+” “+”满足交换律, a + b = b + a a+b=b+a a+b=b+a
- R 2 R2 R2: “ ⋅ ” “·” “⋅”满足结合律, a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a·(b·c)=(a·b)·c a⋅(b⋅c)=(a⋅b)⋅c
- R 3 R3 R3: “ + ” “ ⋅ ” “+”“·” “+”“⋅”满足分配律, a ⋅ ( b + c ) = a ⋅ b + a ⋅ c , ( b + c ) ⋅ a = b ⋅ a + c ⋅ a a·(b+c)=a·b+a·c,(b+c)·a=b·a+c·a a⋅(b+c)=a⋅b+a⋅c,(b+c)⋅a=b⋅a+c⋅a
-
子环subring:设 ( R , + , ⋅ ) (R,+,·) (R,+,⋅)是一个环, S S S是 R R R的一个非空子集, S ⊂ R , S\subset R, S⊂R,如果 S S S关于 R R R的运算构成环(满足 R 1 、 R 2 、 R 3 R1、R2、R3 R1、R2、R3),则称 S S S为 R R R的子环,记作 S < R S<R S<R。
-
子环的充分必要条件: