近世代数--除环与域--四元数体

本文介绍了四元数体的概念,由爱尔兰数学家哈密顿发现,它标志着现代代数学的开端。内容包括四元数体的定义、性质,如作为域的扩展、非交换性及所有非零元素的可逆性。此外,还阐述了如何将四元数体写成四元数的形式,有助于理解这一抽象代数的重要概念。
摘要由CSDN通过智能技术生成

近世代数--除环与域--四元数体

博主是初学近世代数(群环域),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。
我整理成一个系列:近世代数,方便检索。

四元数体是爱尔兰数学家哈密顿(W.R.Hamilton)于1843年发现的,是数学史上一件划时代的事件,把代数学从传统算术中解放出来,开启现代代数学的发展。

先验知识:

  • field:可交换的除环
  • skew field:非交换的除环
  • 四元数 quaternion:四个元素1,i,j,k及实数所生成的,a1+bi+cj+dk,简记为a+bi+cj+dk

四元数体 quaternion field: H H H是所有形如 ( α β − β ˉ α ˉ ) , α , β ∈ C \left( \begin{matrix} \alpha& \beta\\ -\bar{\beta} & \bar{\alpha} \end{matrix} \right),\alpha,\beta\in C (αβˉβαˉ),α,βC
的复矩阵所组成的集合。
证明: H H H关于矩阵的加法和乘法构成一个体。

证明:

  • :证明是 M 2 ( C ) M_2(C) M2(C)的子环( M 2 ( C ) M_2(C) M2(C)是所有复数的二阶矩阵(2x2)所组成的集合,是个环),即证明减法封闭,乘法封闭
    A = A= A= ( α β − β ˉ α ˉ ) \left( \begin{matrix} \alpha& \beta\\ -\bar{\beta} & \bar{\alpha} \end{matrix} \right) (αβˉβαˉ) , B = , B= ,B= ( γ δ − δ ˉ γ ˉ ) \left( \begin{matrix} \gamma& \delta\\ -\bar{\delta} & \bar{\gamma} \end{matrix} \right) (γδˉδγˉ) ∈ H , A − B = \in H, \\A-B= H,AB= ( α − γ β − δ − β − δ ‾ α − γ ‾ ) \left( \begin{matrix} \alpha-\gamma & \beta-\delta\\ -\overline{\beta-\delta} & \overline{\alpha-\gamma} \end{matrix} \right) (

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值