第10章 因子分析(FA)

1 简介

原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子

因子分析主成分分析的推广,它也是多元统计分析中常用的一种降维方式

因子分析--->数据降维

2 基本思想

根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。每组变量代表一个基本结构,并用一个不可测的综合变量表示,这个基本结构就称为公共因子

3 数学模型

假设 p p p个随机变量 X i ( i = 1 , 2 , . . . , p ) X_i(i=1,2,...,p) Xi(i=1,2,...,p)满足模型:

X i = μ i + α i 1 F 1 + . . . + α i m F m + ε i ( m ≤ p ) {X_i} = {\mu _i} + {\alpha _{i1}}{F_1} + ... + {\alpha _{im}}{F_m} + {\varepsilon _i}{\rm{ (}}m \le p) Xi=μi+αi1F1+...+αimFm+εi(mp)

{ X 1 = μ 1 + α 11 F 1 + . . . + α 1 m F m + ε 1 X 2 = μ 2 + α 21 F 1 + . . . + α 2 m F m + ε 2 . . . . . . X p = μ p + α p 1 F 1 + . . . + α p m F m + ε p \left\{ {\begin{array}{cc} {{X_1} = {\mu _1} + {\alpha _{11}}{F_1} + ... + {\alpha _{1m}}{F_m} + {\varepsilon _1}}\\ {{X_2} = {\mu _2} + {\alpha _{21}}{F_1} + ... + {\alpha _{2m}}{F_m} + {\varepsilon _2}}\\ {......}\\ {{X_p} = {\mu _p} + {\alpha _{p1}}{F_1} + ... + {\alpha _{pm}}{F_m} + {\varepsilon _p}} \end{array}} \right. X1=μ1+α11F1+...+α1mFm+ε1X2=μ2+α21F1+...+α2mFm+ε2......Xp=μp+αp1F1+...+αpmFm+εp

则称此式的模型为因子模型,用矩阵形式简记为: X = μ + A F + ε X = \mu + AF + \varepsilon X=μ+AF+ε

其中, F i F_i Fi公共因子,是不可观测的变量,它们的系数 α i j {\alpha _{ij}} αij称为载荷因子 A = ( α i j ) p × m A = {({\alpha _{ij}})_{p \times m}} A=(αij)p×m因子载荷矩阵 ε i {\varepsilon _i} εi特殊因子,是不能被前m个公共因子包含的部分

因子分析的可行性分析

  1. 相关系数矩阵【大部分相关系数都>0.3时可进行因子分析】
  2. KMO(Kaiser-Meyer-Olkin)检验:检验变量之间的偏相关系数是否过小【此值>0.5时可进行因子分析】
  3. Bartlett's检验:检验显著性水平(Sig.)【此值<0.05时可进行因子分析】
  4. 变量共同度较高时可进行因子分析】

因子分析模型的性质:载荷矩阵不是唯一的

3.1 公共因子及载荷矩阵

公共因子数目的两种确定依据

  • 碎石图
  • 累积方差贡献率

因子载荷矩阵的统计性质

  1. 因子载荷 α i j {\alpha _{ij}} αij c o v ( X i , F j ) = α i j {\mathop{\rm cov}} ({X_i},{F_j}) = {\alpha _{ij}} cov(Xi,Fj)=αij,即 a i j a_{ij} aij X i X_i Xi F j F_j Fj的协方差(相关系数)
  2. 变量共同度 h i 2 {h_i}^2 hi2:因子载荷矩阵A中第i行元素的平方哈,记为 h i 2 = ∑ j = 1 m α i j 2 ( i = 1 , 2 , . . . , p ) {h_i}^2 = \sum\limits_{j = 1}^m {\alpha _{ij}^2} {\rm{ (i=1,2,...,p)}} hi2=j=1mαij2(i=1,2,...,p)
  3. 公共因子 F j F_j Fj方差贡献和 S j S_j Sj

因子载荷矩阵的三种估计方法

  1. 主成分分析法
  2. 主因子法
  3. 最大似然估计法

3.2 因子旋转(正交变换)

  • 方差最大法:从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方的方差最大
  • 四次方最大法:使因子载荷矩阵中每一行的因子载荷平方的方差达到最大
  • 等量最大法:把方差最大法和四次方最大法结合起来,求它们的加权平均最大

3.3 因子得分

因子得分就是公共因子在每一个样本点上的得分,由于 p > m p>m p>m,所以不能得到精确值,只能通过估计

因子得分函数 F j = c j + β j 1 X 1 + . . . + β j p X p , j = 1 , 2 , . . . , m {F_j} = {c_j} + {\beta _{j1}}{X_1} + ... + {\beta _{jp}}{X_p},j = 1,2,...,m Fj=cj+βj1X1+...+βjpXp,j=1,2,...,m

因子得分的两种估计方法:

  • 巴特莱特法(加权最小二乘法)

  • 回归分析法

4 步骤

  1. 根据问题选取原始变量,对数据进行标准化处理
  2. 计算相关系数矩阵,分析变量之间的相关性(较强)
  3. 求解公共因子及载荷矩阵
  4. 因子旋转(正交变换)
  5. 计算因子得分
  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值