计算任意矩阵的任意次方

思考题:如何计算如下矩阵的任意次方
( 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0 2 ) \begin{pmatrix}2&1&0&0\\0&2&1&0\\0&0&2&1\\0&0&0&2\end{pmatrix} 2000120001200012
思路:

给出的例子是一个四阶的Jordan块,这是一个提示。我们知道任何方阵都相似于由Jordan阵构成的分块矩阵,也就是 A = T J T − 1 A=TJT^{-1} A=TJT1,其中 J = ( J 1 0 ⋯ 0 0 J 2 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 0 J s ) J=\begin{pmatrix}J_1&0&\cdots&0\\0&J_2&\cdots&0\\\vdots&&\ddots&\vdots\\0&\cdots&0&J_s\end{pmatrix} J=J1000J2000Js是多个循环子空间的直和。所以任意矩阵都可以通过化成Jordan标准型来计算其任意次方:

f ( A ) = A k = ( T ( J 1 0 ⋯ 0 0 J 2 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 0 J s ) T − 1 ) k = T ( J 1 k 0 ⋯ 0 0 J 2 k ⋯ 0 ⋮ ⋱ ⋮

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值