思考题:如何计算如下矩阵的任意次方
( 2 1 0 0 0 2 1 0 0 0 2 1 0 0 0 2 ) \begin{pmatrix}2&1&0&0\\0&2&1&0\\0&0&2&1\\0&0&0&2\end{pmatrix} ⎝⎜⎜⎛2000120001200012⎠⎟⎟⎞
思路:
给出的例子是一个四阶的Jordan块,这是一个提示。我们知道任何方阵都相似于由Jordan阵构成的分块矩阵,也就是 A = T J T − 1 A=TJT^{-1} A=TJT−1,其中 J = ( J 1 0 ⋯ 0 0 J 2 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 0 J s ) J=\begin{pmatrix}J_1&0&\cdots&0\\0&J_2&\cdots&0\\\vdots&&\ddots&\vdots\\0&\cdots&0&J_s\end{pmatrix} J=⎝⎜⎜⎜⎛J10⋮00J2⋯⋯⋯⋱000⋮Js⎠⎟⎟⎟⎞是多个循环子空间的直和。所以任意矩阵都可以通过化成Jordan标准型来计算其任意次方:
f ( A ) = A k = ( T ( J 1 0 ⋯ 0 0 J 2 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ 0 J s ) T − 1 ) k = T ( J 1 k 0 ⋯ 0 0 J 2 k ⋯ 0 ⋮ ⋱ ⋮