直方图之频域滤波

本文介绍了傅里叶变换在图像处理中的应用,包括频域滤波的基本原理,如低通滤波器的作用和类型。同态滤波通过压缩图像动态范围和增强对比度来改善图像质量。Retinex理论则结合视网膜和大脑皮层模型,用于分析和增强图像的色彩和对比度,其在图像增强中有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

傅里叶变换

引言:连续周期信号可以表示为一系列不同频率的正弦波的线性叠加,如下图6-1

在这里插入图片描述

图6-1

性质

  1. 平移特性
  2. 旋转特性
  3. 尺度特性
  4. 卷积特性:空间域的卷积对应频域的乘积;空间域的乘积对应频域的卷积
  5. 相关特性
  6. 分离特性

频域滤波原理

通过滤波系统修正,输入图像频率成分,从而达到图像增强的目的

低通滤波器

作用:允许低频成分通过,去除衰减(高频)成分,图像中尖锐的细节被平滑
类型

  1. 理想低通滤波器
  2. Butterworth滤波器
  3. 高斯低通滤波器

同态滤波

  1. 基于图像成像模型
  2. 在频域压缩灰度动态范围,增强对比度

f ( x , y ) = I ( x , y ) × R ( x , y ) f(x, y) = I(x, y) \times R(x, y) f(x,y)=I(x,y)×R(x,y)

I ( x , y ) I(x, y) I(x,y):照射分量 =====> 在整个空间区域缓慢变化

R ( x , y ) R(x, y) R(x,y):反射分量 =====> 在整个物体间的交界处急剧变化

人眼对图像亮度的响应类似于对数运算: l n ( x , y ) = l n I ( x , y ) + l n R ( x , y ) ln(x,y) = lnI(x,y) + lnR(x, y) ln(x,y)=lnI(x,y)+lnR(x,y)

作用:

  1. 抑制低频,压缩了图像的动态范围
  2. 增强高频,加大了各部分间的对比度
    如下图6-2

在这里插入图片描述

图6-2

应用效果,如下图6-3

同态滤波

图6-3

基于Retinex滤波

名称:

  1. Retina:视网膜
  2. Cortex:大脑皮层

理论:

  1. 物体颜色:物体对长波、中波、短波的反射特性
  2. 人眼视觉:观察物体时首先寻找标准的“白光“,计算色差从而得到物体的信息

结论:

  1. 入射光决定了图像灰度级动态范围
  2. 反射光决定了图像具有的内在本质

入射分量的特点:

  1. 入射分量具有缓和平滑性
  2. 入射分量与反射光具有一定的弱相关性

l n R ( x , y ) = l n f ( x , y ) − l n I ( x , y ) lnR(x,y) = lnf(x,y) - lnI(x,y) lnR(x,y)=lnf(x,y)lnI(x,y)
l n f ( x , y ) lnf(x,y) lnf(x,y):原图像
l n I ( x , y ) lnI(x,y) lnI(x,y):需要估算的值

环绕函数法: I ( x , y ) = f ( x , y ) × h ( x , y ) I(x,y) = f(x,y) \times h(x,y) I(x,y)=f(x,y)×h(x,y)

实际应用如图6-4

在这里插入图片描述

图6-4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值