两种生成对称正定矩阵的方法

两种生成对称正定矩阵的方法

1. pascal()

P = pascal(n) 返回 n 阶帕斯卡矩阵。P 是一个对称正定矩阵,其整数项来自帕斯卡三角形。

帕斯卡矩阵有非常好的性质。首先各个矩阵中元素都是从1开始比较小的正整数,便于我们去验证。然后我们对其进行乔列斯基分解,结果是一个对合矩阵( A − 1 = A A^{-1}=A A1=A

matlab文档中的例子:
在这里插入图片描述

2.运用正交分解的思想

一个对称正定矩阵可以分解为: A = U ′ D U A=U'DU A=UDU U为标准正交基向量组成的矩阵,D为对角阵且存储的是特征值。

X = diag(rand(N,1));
U = orth(rand(N,N));
A = U' * X * U

对于rand(N,N)我们可以这么理解,生成非满秩的矩阵的概率是非常小的,只要保证特征值都是正数,那生成的矩阵是为对称正定阵。

运用这种方法的方便之处在于可以比较灵活的调整矩阵的性质(特征值、正交基)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值