截至2024年11月,DeepSeek已发布了多个版本的大模型,主要包括DeepSeek - Coder、DeepSeek - LLM等,各版本在不同方面各有优劣:
各版本简介及对比
1. DeepSeek - Coder
- 特点:这是专注于代码领域的模型。它基于海量代码数据进行训练,对各类编程语言的语法、语义有深入理解。能快速准确地完成代码补全、代码生成、代码解释、代码纠错等任务,在编程场景中为开发者提供高效的辅助。
- 性能表现:在代码生成的准确性、生成速度和对复杂编程问题的处理能力上表现突出。例如,在一些代码生成基准测试中,它能够生成高质量、可运行的代码片段,极大提高开发者的编程效率。
2. DeepSeek - LLM 6.7B
- 特点:属于基础规模的通用语言模型版本。具备一定的语言理解和生成能力,能处理常见的文本任务,如文本问答、摘要生成、故事创作等。它的参数量相对较少,模型体积较小。
- 性能表现:虽然在复杂任务处理能力上不如更大规模的版本,但在一些简单文本任务上响应速度较快,并且对硬件资源的要求相对较低。
3. DeepSeek - LLM 7B Chat
- 特点:是面向对话场景优化的版本,针对聊天交互进行了专门训练。它能够理解用户的自然语言提问,并生成流畅、