前言
今天写程序的时候用到了邻接表的知识,其中参考的代码里面用到了链式前向星的概念,由于之前没有学过这个,导致代码看了半天还是一头雾水,然后评论区找到了答案,赶紧学习了一下相关知识,并且做做笔记
图的存储
邻接矩阵
- 图示
- 不考虑权重,有指向关系就标记为1,否则为-1,这样就存好了
- 缺点:太消耗内存,适合密集型
邻接表
- 图示
- 增加head[]
head[] 所存储的就是从这些每一个点指出的第一条边在edge邻接表中的下标,因为是用cnt赋值给它的,下面给出代码就很容易理解了
邻接表代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;//点数最大值
int n, m;//n个点,m条边
int cnt; //cnt是遍历Edge[]边集数组的下标
struct Edge
{
int to, w, next;//终点,边权,同起点的上一条边的编号
}edge[maxn];//边集
int head[maxn];//head[i],表示以i为起点的第一条边在边集数组的位置(编号)
// 也就是以i为起点的第一条边在edge数组里面的下标
void init()//初始化
{
for (int i = 0; i <= n; i++) head[i] = -1;
cnt = 0;
}
void add_edge(int u, int v, int w)//加边,u起点,v终点,w边权
{
cnt++; //先增加1,edge[]结构数组从下标1开始存,第0号不使用,更加便于理解
edge[cnt].to = v; //终点
edge[cnt].w = w; //权值
edge[cnt].next = head[u];//以u为起点上一条边的编号,也就是与这个边起点相同的上一条边的编号
// 第一次赋值为head[u]时为-1,也说明还没有临边
// 之后的插入都是从前面进行插入,这个-1刚好也就作为的邻边结束的标志
head[u] = cnt;//更新以u为起点上一条边的编号
// 以u为起点的目前的第一条边存储在edge[]里面的下标是当前的cnt
}
int main()
{
cin >> n >> m;
int u, v, w; //起点,终点,权重
init();//初始化
for (int i = 1; i <= m; i++)//输入m条边
{
cin >> u >> v >> w;
add_edge(u, v, w);//加边
/*
加双向边
add_edge(u, v, w);
add_edge(v, u, w);
*/
}
for (int i = 1; i <= n; i++)//n个起点
{
cout << i << endl;
// 点i为起点的第一条边(按照顺序实际上是最后存进去的那条边)在edge[]中的下标为head[i]
//这样就通过head[]开始了遍历,然后第二条边就是前一条边的next
//head数组实际上是用来存储开头的
for (int j = head[i]; j != -1; j = edge[j].next)//遍历以i为起点的边
{
cout << i << " " << edge[j].to << " " << edge[j].w << endl;
}
cout << endl;
}
return 0;
}
- 输入
/*输入
5 7
1 2 1
2 3 2
3 4 3
1 3 4
4 1 5
1 5 6
4 5 7
*/
- 输出
/*输出
1
1 5 6
1 3 4
1 2 1
2
2 3 2
3
3 4 3
4
4 5 7
4 1 5
5
*/