圆与矩形的相交条件有以下2个:
我们约定矩形左下角坐标为(x1,y1),右上角坐标为(x2,y2),圆形坐标为(cx,cy),半径为r,矩形中心横坐标 x0 = (x2+x1)/2,纵坐标为y0 = (y1 + y2)/2;约定这些是为了下边描述更加方便
一、矩形顶点在圆内
如上图所示,当矩形四个顶点有一个顶点在圆内时,可以认为矩形与圆是相交的,即:
//找出x方向与cx最接近的
minx = min(abs(x1 - cx), abs(x2 - cx));
//找出y方向与cy最接近的
miny = min(abs(y1 - cy), abs(y2 - cy));
if (minx * minx + miny * miny < r * r)return true;
二、圆与矩形边相交(包含圆在矩形内)
如上边两种情况,第一种情况中圆心与矩形中心在竖直方向上距离小于(圆直径+矩形高)/2,并且圆心横坐标在矩形长边内;同理第二种情况是圆心与矩形中心在水平方向上距离小于(圆直径+矩形长)/2,并且圆心纵坐标在矩形短边内;可以发现如果圆在矩形内部的话,实际上也已经满足了该条件。
if ((abs(x0 - cx) < abs(x2 - x1) / 2 + r) && abs(cy - y0) < abs(y2 - y1) / 2)
return true;
if ((abs(y0 - cy) < abs(y2 - y1) / 2 + r) && abs(cx - x0) < abs(x2 - x1) / 2)
return true;
因此,以上两个条件是圆与矩形相交的充要判据
总代码
bool check(double x1,double y1,double x2,double y2,double cx,double cy,double r) {
//条件1
double minx, miny;
//找出x方向与cx最接近的
minx = min(abs(x1 - cx), abs(x2 - cx));
//找出y方向与cy最接近的
miny = min(abs(y1 - cy), abs(y2 - cy));
if (minx * minx + miny * miny < r * r)return true;
//条件2
double x0 = (x1 + x2) / 2;
double y0 = (y1 + y2) / 2;
if ((abs(x0 - cx) < abs(x2 - x1) / 2 + r) && abs(cy - y0) < abs(y2 - y1) / 2)
return true;
if ((abs(y0 - cy) < abs(y2 - y1) / 2 + r) && abs(cx - x0) < abs(x2 - x1) / 2)
return true;
return 0;
}
参考文献: