平面中圆与矩形相交判定

圆与矩形的相交条件有以下2个:

我们约定矩形左下角坐标为(x1,y1),右上角坐标为(x2,y2),圆形坐标为(cx,cy),半径为r,矩形中心横坐标 x0 = (x2+x1)/2,纵坐标为y0 = (y1 + y2)/2;约定这些是为了下边描述更加方便

一、矩形顶点在圆内

                

        如上图所示,当矩形四个顶点有一个顶点在圆内时,可以认为矩形与圆是相交的,即:

//找出x方向与cx最接近的
minx = min(abs(x1 - cx), abs(x2 - cx));
//找出y方向与cy最接近的
miny = min(abs(y1 - cy), abs(y2 - cy));
if (minx * minx + miny * miny < r * r)return true;

 

二、圆与矩形边相交(包含圆在矩形内)

        如上边两种情况,第一种情况中圆心与矩形中心在竖直方向上距离小于(圆直径+矩形高)/2,并且圆心横坐标在矩形长边内;同理第二种情况是圆心与矩形中心在水平方向上距离小于(圆直径+矩形长)/2,并且圆心纵坐标在矩形短边内;可以发现如果圆在矩形内部的话,实际上也已经满足了该条件。

if ((abs(x0 - cx) < abs(x2 - x1) / 2 + r) && abs(cy - y0) < abs(y2 - y1) / 2)
	return true;
if ((abs(y0 - cy) < abs(y2 - y1) / 2 + r) && abs(cx - x0) < abs(x2 - x1) / 2)
	return true;

因此,以上两个条件是圆与矩形相交的充要判据

总代码

bool check(double x1,double y1,double x2,double y2,double cx,double cy,double r) {
	//条件1
	double minx, miny;
	//找出x方向与cx最接近的
	minx = min(abs(x1 - cx), abs(x2 - cx));
	//找出y方向与cy最接近的
	miny = min(abs(y1 - cy), abs(y2 - cy));
	if (minx * minx + miny * miny < r * r)return true;

	//条件2
	double x0 = (x1 + x2) / 2;
	double y0 = (y1 + y2) / 2;
	if ((abs(x0 - cx) < abs(x2 - x1) / 2 + r) && abs(cy - y0) < abs(y2 - y1) / 2)
		return true;
	if ((abs(y0 - cy) < abs(y2 - y1) / 2 + r) && abs(cx - x0) < abs(x2 - x1) / 2)
		return true;

	return 0;
}

参考文献:

https://www.cnblogs.com/llkey/p/3707351.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

负壹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值