区域树(Range Tree)的构建(Build)与查询(Query)

区域树是一种用于二维空间正交查找的数据结构,常用于高效查询特定矩形区域内包含的点。本文介绍了如何构建区域树,通过先沿X坐标建立X-tree,再为每个X-tree节点建立Y-tree,最终形成完整的区域树。查询时,先根据X坐标定位,再检查Y坐标范围,以确定点是否在指定区域内。这种数据结构在处理大量点的范围查询问题时展现出良好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是区域树(Range Tree)

        首先以2D Range Tree为例,在一个二维平面上有很多点,点都有x和y坐标,现在要查询在区域 [x1,x2] × [y1,y2] 范围内的所有点,常用的方法一般是先将数据点预处理成一棵树,然后通过对数中点集的查找来实现。其中区域树就是一种正交查找的常用方法,主要思路是将点沿X坐标建立一棵树,再将每个节点的子树按照Y坐标再建立一棵树,具体实现与查找见下文。

 

二、区域树构建(Build)

        首先对于平面中的四个点,可以根据X坐标建立X-tree,如下所示:

          

        接下来要将每一个节点对应的子树再建立一个Y-tree,比如对于根节点,他的子树中点有4个,那么Y-tree为:

            

        X-tree根节点的两个子节点对应的子树都有两个点,于是对应的Y-tree为:

            

        于是一个区域树就被构建好了:

            

        上边只是构建的大致思路,但是具体流程的伪代码应该怎么写呢?建立一棵树多采用递归的思路,如果点集只有一个,那么该点对应X-tree与Y-tree直接就是自身;如果点集中点不止一个,那么就用中位数将他们分为两部分,当前节点t的值为中位数,将两部分分别构建成当前节点t的两课子树,即t.left和t.right,此时已经完成了X-tree的构建,然后将两棵子树的点按Y坐标归并成一棵Y-tree,这样在一次递归过程中,以nlogn的时间开销和nlogn的空间开销完成了区域树构建。

             

 

三、区域树查找(Query)

        区域树的查找是先查找X坐标,当点X坐标处于 [x1,x2] 之间时,再查找Y坐标是否在范围 [y1,y2] 内,如果是的话就将点输出。具体的查找过程是:从根节点入手,查看当前节点子树的X坐标是否在范围内,如果在的话,那就不需要再继续向下查找X-Tree了,可以直接查询Y坐标了;如果当前节点是一个叶子,那么只需要验证一下是否处于 [x1,x2] × [y1,y2]即可;若当前节点子树与查询范围有交叉,那么需要继续向下细分X-tree进行查询,重复上述过程直到查询完毕。

            

看明白的话记得点个赞哦~ 里边用图参考于:https://www.cse.wustl.edu/~taoju/cse546/lectures/Lecture21_rangequery_2d.pdf

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

负壹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值