逻辑回归模型构建+PDP(部分依赖图)解析——Python代码及运行结果分析

一、逻辑回归模型简介

逻辑回归是一种广泛用于二分类问题的统计模型。它通过使用逻辑函数将预测结果映射到0到1之间,从而可以用于概率预测。模型的训练过程通常包括以下几个步骤:

  1. 数据预处理:处理缺失值、编码分类变量、标准化数值变量。
  2. 特征选择:选择重要的特征用于模型训练。
  3. 模型训练:使用训练数据拟合逻辑回归模型。
  4. 模型评估:使用测试数据评估模型性能。

二、部分依赖图(PDP)简介

部分依赖图(Partial Dependence Plot, PDP)用于可视化单一特征或两个特征与目标变量之间的关系。它通过固定其他所有特征值,仅改变一个或两个特征值来观察模型预测的变化,从而帮助理解模型的决策过程。

  • 单变量部分依赖图:显示了单个特征(mean radius 和 mean texture)对目标变量的影响。可以看到,随着特征值的变化,模型预测概率也随之变化。

  • 双变量交互作用部分依赖图:显示了两个特征(mean radius 和 mean texture)的组合对目标变量的影响。通过图表可以观察到特征之间的交互作用及其对模型预测的影响。

三、PDP的使用步骤

  1. 训练模型:训练一个逻辑回归模型。
  2. 生成PDP:使用PDP函数生成单变量和双变量的部分依赖图。
  3. 可视化结果:绘制PDP图形,以便直观理解特征与目标变量之间的关系。

四、Python代码及运行结果分析

1. 数据准备

我们将使用著名的乳腺癌数据集(Breast Cancer Dataset)进行演示。

import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_auc_score
from sklearn.inspection import PartialDependenceDisplay
import matplotlib.pyplot as plt
import seaborn as sns

# 加载数据
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

2.逻辑回归模型构建

# 数据拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 训练逻辑回归模型
model = LogisticRegression(max_iter=10000)
model.fit(X_train_scaled, y_train)

3.模型评价

# 模型评估
y_pred = model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
roc_auc = roc_auc_score(y_test, model.predict_proba(X_test_scaled)[:, 1])
fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test_scaled)[:, 1])

3.1 混淆矩阵 

# 可视化混淆矩阵
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()

829e96e0153c4feaa6a2666a7381a086.png

 混淆矩阵显示了模型在测试数据上的预测结果:

  • True Positive (TP): 70
  • True Negative (TN): 38
  • False Positive (FP): 1
  • False Negative (FN): 4

3.2 ROC 曲线

# 可视化ROC曲线
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, label=f'ROC curve (area = {roc_auc:.2f})')
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.show()

10bc406e82df47c3965cb7efa256d325.png

ROC曲线展示了模型在不同阈值下的性能,曲线下面积(AUC)为0.99,表明模型具有很好的分类性能。

3.3 模型评估结果

  1. 准确性(Accuracy): 0.98
  2. ROC AUC: 0.99

4.部分依赖图(PDP)解析

4.1 多个单变量部分依赖图(PDP)解析

特征选择,我们选择了乳腺癌数据集中的五个特征进行PDP解析:

  1. mean perimeter (特征索引2)
  2. mean area (特征索引3)
  3. mean smoothness (特征索引4)
  4. mean compactness (特征索引5)
  5. mean concavity (特征索引6)
# 选择多个特征进行PDP解析
features = [2, 3, 4, 5, 6]  # 选择不同的特征进行解析

# 生成并展示单变量PDP
fig, ax = plt.subplots(figsize=(12, 8))
PartialDependenceDisplay.from_estimator(model, X_train_scaled, features, ax=ax)
plt.suptitle('Partial Dependence Plots for Multiple Single Features')
plt.subplots_adjust(top=0.9)  # 调整标题位置
plt.show()

4.1.1 PDP运行结果图

0287bb79fefe4e0aa205a0d81e4a2b0a.png

4.1.2 PDP结果分析

  1. mean perimeter:

    • PDP图显示,当mean perimeter值较小时,模型预测的恶性肿瘤的概率较低。
    • 随着mean perimeter值的增加,恶性肿瘤的概率显著增加,这与乳腺癌肿瘤通常更大有关。
  2. mean area:

    • mean area的PDP图展示了类似的趋势,即当mean area较小时,恶性肿瘤的概率较低。
    • mean area增加时,恶性肿瘤的概率也显著增加。这符合肿瘤面积较大的病变通常更可能是恶性肿瘤的规律。
  3. mean smoothness:

    • 对于mean smoothness,PDP图显示其与恶性肿瘤概率的关系较为复杂。
    • 在某些范围内,mean smoothness的增加会导致恶性肿瘤概率的增加,但这种关系不如前两个特征那么显著。
  4. mean compactness:

    • mean compactness的PDP图也显示出其与恶性肿瘤概率的正相关关系。
    • 随着mean compactness增加,恶性肿瘤的概率上升,但这个特征的影响相对较小。
  5. mean concavity:

    • mean concavity与恶性肿瘤概率有明显的正相关关系。
    • PDP图显示,当mean concavity较高时,恶性肿瘤的概率显著增加,这表明该特征对模型预测有重要影响。

4.2 双变量交互部分依赖图(PDP)解析

特征选择,我们选择了以下特征对进行交互PDP解析:

  1. mean radius 和 mean perimeter (特征索引0和2)
  2. mean texture 和 mean area (特征索引1和3)
  3. mean perimeter 和 mean smoothness (特征索引2和4)
  4. mean area 和 mean compactness (特征索引3和5)
# 选择不同的特征对进行双变量交互PDP解析
features_interaction = [(0, 2), (1, 3), (2, 4), (3, 5)]  # 选择特征对进行交互解析

# 生成并展示双变量PDP
fig, ax = plt.subplots(figsize=(12, 8))
PartialDependenceDisplay.from_estimator(model, X_train_scaled, features_interaction, ax=ax)
plt.suptitle('Partial Dependence Plots for Feature Interactions')
plt.subplots_adjust(top=0.9)  # 调整标题位置
plt.show()

4.2.1 PDP运行结果图 

6e3639a6dbdf43d1a23ac255f74d32ff.png

4.2.2 PDP结果分析

  1. mean radius 和 mean perimeter:

    • 这两个特征都是与肿瘤大小相关的度量。PDP图显示,当mean radiusmean perimeter同时增加时,恶性肿瘤的概率显著增加。
    • 这表明这两个特征在预测恶性肿瘤时具有协同作用,较大的肿瘤半径和周长同时出现时更可能是恶性肿瘤。
  2. mean texture 和 mean area:

    • mean texturemean area的交互PDP图展示了类似的趋势。当这两个特征值同时较高时,恶性肿瘤的概率也显著增加。
    • 这表明肿瘤的质地和面积的结合对模型预测有重要影响。
  3. mean perimeter 和 mean smoothness:

    • mean perimetermean smoothness的交互PDP图中,我们可以看到这两个特征的交互作用。
    • mean perimeter值较大且mean smoothness值较小时,恶性肿瘤的概率最高。这表明大周长和低光滑度的组合对预测恶性肿瘤具有重要作用。
  4. mean area 和 mean compactness:

    • mean areamean compactness的交互PDP图显示了当这两个特征值较高时,恶性肿瘤的概率也较高。
    • 这表明肿瘤面积和紧凑度的结合对模型预测有显著影响,尤其是在两个特征都较高的情况下。

五、结论

通过单变量PDP图的解析,我们可以更好地理解模型是如何利用这些特征进行预测的。具体来说,肿瘤的周长、面积、光滑度、紧凑度和凹度都对模型预测有显著影响。这些特征与恶性肿瘤概率之间的关系符合医学上的常识,例如更大的周长和面积通常意味着更可能是恶性肿瘤。

通过分析双变量交互的PDP图,我们可以更全面地理解模型在考虑特征交互作用时的行为。这些交互作用图表明,多种特征的组合对恶性肿瘤的预测具有显著影响,特别是当多个特征值同时较高时,模型预测的恶性肿瘤概率也会显著增加。

 

  • 68
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 部分依赖图(Partial Dependence Plot)是一种可视化方法,用于了解自变量如何影响模型预测结果。在Python中,可以使用scikit-learn库中的partial_dependence函数来生成部分依赖图。这个函数需要输入训练数据、训练好的模型和要生成部分依赖图的自变量。生成的部分依赖图可以帮助我们了解每个自变量的重要性和影响方式,从而更好地理解模型的预测结果。 ### 回答2: Python是一种高级编程语言,被广泛用于开发各种应用和领域。在Python中,部分依赖图是指程序中存在一些模块或函数之间的依赖关系,其中某些模块或函数依赖于其他模块或函数的输出结果。 部分依赖图Python开发中非常常见,特别是在大型项目中。它有助于提高代码的可维护性和重用性。 举个例子,假设有一个Python程序,包含三个模块A、B和C。模块A负责处理输入数据,模块B根据A的输出结果进行一些计算,模块C则基于B的结果进行最终的数据展示。 在这个例子中,A模块是整个程序的起点,B模块依赖于A模块的输出结果,而C模块则依赖于B模块的输出结果。这种关系可以通过部分依赖图来表示,A指向B,B指向C,形成一个有向图。 使用部分依赖图可以帮助开发者更好地理解程序的结构和逻辑,可以清晰地看到哪些模块或函数之间存在依赖关系,以及依赖关系的方向。 在实际开发中,当我们修改某个模块或函数时,部分依赖图可以帮助我们确定需要更新的其他模块或函数,以确保程序的正确性。同时,它也有助于优化代码的执行顺序,提高程序的运行效率。 总之,部分依赖图Python开发中的一个重要工具,它可以帮助开发者理清程序中各个模块或函数之间的依赖关系,提高代码的可维护性和重用性。 ### 回答3: 部分依赖图是表示关系数据库中实体之间的依赖关系的一种图形表示方法。在部分依赖图中,初值左侧的实体是依赖的一方,右侧的实体是被依赖的一方。 在Python中,部分依赖图可以通过使用第三方库或自定义代码实现。一种常见的实现方式是使用pygraphviz库或networkx库。 使用pygraphviz库可以将部分依赖图以图形的形式展示出来。首先需要安装pygraphviz库,并导入相关模块。然后,创建一个空的有向图,添加节点和边,并设置节点和边的属性。最后,使用graph.draw()方法将图形保存为文件或者显示在屏幕上。 使用networkx库也可以实现部分依赖图的绘制。首先需要安装networkx库,并导入相关模块。然后,创建一个无向图或有向图,通过添加节点和边的方式来构造图的结构。最后,使用networkx.draw()函数将图形保存为文件或者显示在屏幕上。 除了使用第三方库外,也可以自定义代码实现部分依赖图的绘制。首先,需要定义图的节点和边的数据结构,并编写相应的操作函数。然后,根据具体的依赖关系,进行节点的添加和边的连接。最后,将图形的绘制结果以合适的形式输出或显示在屏幕上。 总而言之,部分依赖图是一种用于表示关系数据库中实体之间依赖关系的图形表示方法,可以通过使用第三方库或自定义代码Python中进行实现。不同的实现方法可以根据需求选择,并将图形展示出来,便于理解和分析实体之间的依赖关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值