高等数学 第十章 重积分

第十章 重积分

——made by njtech Melody


一元函数积分学→多元函数积分学 { 二重积分 三重积分 曲线积分 曲面积分 \{\begin{array}{l} 二重积分 \\ 三重积分\\曲线积分\\曲面积分 \end{array} {二重积分三重积分曲线积分曲面积分

*.引言

  • 与一元积分类似,都有“大化小”,“常代变”,“近似和”,”取极限“

“大化小”:分为n个小区域

“常代变”:每个小区域中算出题目所需的变量

“近似和”:整体取近似

”取极限“:n取无穷,区域越来越小,结果越来越逼近真实值

理解积分:

  • 何为积分?按照目前的所学知识,理解为:用 $ n$ 维某个图形的某个式子,求出 n + 1 n+1 n+1 维某个图形的某个特征

  • 何为一重积分?简单的来说,就是我们试图用一个一维的线 f ( x ) f(x) f(x) ,以 f ( x ) f(x) f(x) 的大小代表线上某点的“均匀情况”,用以求出一个二维平面的“某个图形”的某个特征,如:

image-20220513090153972

​ 事实上,一维的“长度情况”在二维平面就表现为“高度情况”,因此说:用一维的“长度情况”求出二维的“面积”

​ 当“高度情况”为1时,弱化为求一维的线段长度,如 ∫ 0 1 d x = x \int_0^1 dx =x 01dx=x

​ 对于求解一重积分,往往不需要画图,只需要对 f ( x ) f(x) f(x) 逆求导即可

  • 何为二重积分?首先“二重”,肯定是两个变量构成一个式子 f ( x , y ) f(x,y) f(x,y) ,在图形上,他是一个二维图形,对比上面的理解,可理解为:以 f ( x , y ) f(x,y) f(x,y) 的大小代表线上某片区域的“均匀情况”,用以求出一个二维平面的“某个图形”的某个特征,如:

image-20220513092930974

​ 事实上,二维的“面积情况”在三维平面就表现为“高度情况”,因此说:用二维的“面积情况”求出三维的“体积”

​ 当“面积情况”为1时,弱化为求二维的面积大小,如 ∫ 0 1 d x d y = x y \int_0^1 dxdy=xy 01dxdy=xy

​ 对于求解二重积分,往往需要画二维图像,根据实际情况对 y y y 积分或对 x x x 积分

  • 何为三重积分?相信你看到这里已经有个大概的印象了,事实上我们难以想象四维图形的样子,但我们仍然可以得到: f ( x , y , z ) f(x,y,z) f(x,y,z) 乘微分并用上下限积分,用三维的“体积情况”求出四维的“某个特征”

    若把一重积分中的 f ( x ) f(x) f(x) 看作线密度,把二重积分中的 f ( x , y ) f(x,y) f(x,y) 看作面积密度,则三重积分中的 f ( x , y , z ) f(x,y,z) f(x,y,z) 可以代表三维图形的体积密度,即生活常见的密度 ρ \rho ρ ,如圆柱密度,球密度

    一个猜想,三维的“体积情况”在四维平面就表现为“高度情况”,因此说:用三维的“体积情况”求出四维的“体积”

    当“体积情况”为1时,弱化为求三维的体积大小,如 ∫ 0 1 d x d y d z = x y z \int_0^1 dxdydz=xyz 01dxdydz=xyz

    对于求解二重积分,往往需要画三维图像,根据实际情况先对某一元进行积分,再对另外二元进行二重积分或者先对某二元进行二重积分,再对另一元进行积分

第一节 二重积分的概念与性质

1.二重积分的表示

∬ D f ( x , y ) d σ = ∬ D f ( x , y ) d x d y \iint_{D} f(x, y) d \sigma=\iint_{D} f(x, y) d x d y Df(x,y)dσ=Df(x,y)dxdy

2.二重积分的性质

存在定理:

定理1. 若函数 f ( x , y ) f(x, y) f(x,y) 在有界闭区域 D D D 上连续, 则 f ( x , y ) f(x, y) f(x,y) D D D 上可积.
定理2. 若有界函数 f ( x , y ) f(x, y) f(x,y) 在有界闭区域 D D D 上除去有限个点或有限个光滑曲线外都连续, 则 f ( x , y ) f(x, y) f(x,y) D D D 上可积.

性质1: k k k 为常数时,
∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ . \iint_{D} k f(x, y) d \sigma=k \iint_{D} f(x, y) d \sigma . Dkf(x,y)dσ=kDf(x,y)dσ.

性质2:
∬ D [ f ( x , y ) ± g ( x , y ) ] d σ = ∬ D f ( x , y ) d σ ± ∬ D g ( x , y ) d σ \begin{aligned}\iint_{D}[f(x, y) \pm g(x, y)] d \sigma =\iint_{D} f(x, y) d \sigma \pm \iint_{D} g(x, y) d \sigma \end{aligned} D[f(x,y)±g(x,y)]dσ=Df(x,y)dσ±Dg(x,y)dσ

性质3: 对区域具有可加性 ( D = D 1 + D 2 ) \left(D=D_{1}+D_{2}\right) (D=D1+D2)
∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ . \iint_{D} f(x, y) d \sigma=\iint_{D_{1}} f(x, y) d \sigma+\iint_{D_{2}} f(x, y) d \sigma . Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ.

性质4:

∬ D   d x   d y = A , A  为区域  D  的面积.  \iint_{D} \mathrm{~d} x \mathrm{~d} y=A, A \text { 为区域 } D \text { 的面积. } D dx dy=A,A 为区域 D 的面积

性质5: 若在 D D D f ( x , y ) ≤ g ( x , y ) f(x, y) \leq g(x, y) f(x,y)g(x,y),则有
∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint_{D} f(x, y) d \sigma \leq \iint_{D} g(x, y) d \sigma Df(x,y)dσDg(x,y)dσ
特殊地 ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint_{D} f(x, y) d \sigma\left|\leq \iint_{D}\right| f(x, y) \mid d \sigma Df(x,y)dσ D f(x,y)dσ.

性质6: (二重积分估值不等式)

M 、 m M 、 m Mm 分别是 f ( x , y ) f(x, y) f(x,y) 在闭区域 D D D 上的 最大值和最小值, σ \sigma σ D D D 的面积, 则
m σ ≤ ∬ D f ( x , y ) d σ ≤ M σ m \sigma \leq \iint_{D} f(x, y) d \sigma \leq M \sigma Df(x,y)dσMσ

性质7:(二重积分中值定理)

设函数 f ( x , y ) f(x, y) f(x,y) 在闭区域 D D D 上连续, σ \sigma σ D D D 的 面积, 则在 D D D 上至少存在一点 ( ξ , η ) (\xi, \eta) (ξ,η) 使得
∬ D f ( x , y ) d σ = f ( ξ , η ) ⋅ σ \iint_{D} f(x, y) d \sigma=f(\xi, \eta) \cdot \sigma Df(x,y)dσ=f(ξ,η)σ

性质8:(对称性)(重点!!)

(1) 设 D D D 关于 y y y 轴对称 (即关于变量 x x x 对称), 其中位于 y y y 轴右侧区域为 D 1 D_{1} D1, 则

f ( − x , y ) = − f ( x , y ) f(-x, y)=-f(x, y) f(x,y)=f(x,y) 时, ∫ D f ( x , y ) d x   d y = 0 \int_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=0 Df(x,y)dx dy=0;

f ( − x , y ) = f ( x , y ) f(-x, y)=f(x, y) f(x,y)=f(x,y) 时, ∬ D f ( x , y ) d x   d y = 2 ∬ D 1 f ( x , y ) d x   d y \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=2 \iint_{D_{1}} f(x, y) \mathrm{d} x \mathrm{~d} y Df(x,y)dx dy=2D1f(x,y)dx dy.

(2) 设 D D D 关于 x x x 轴对称 (即关于变量 y y y 对称), 其中位于 x x x 轴上侧区域为 D 1 D_{1} D1, 则

f ( x , − y ) = − f ( x , y ) f(x,-y)=-f(x, y) f(x,y)=f(x,y) 时, ∬ D f ( x , y ) d x   d y = 0 \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=0 Df(x,y)dx dy=0

f ( x , − y ) = f ( x , y ) f(x,-y)=f(x, y) f(x,y)=f(x,y) 时, ∬ D f ( x , y ) d x   d y = 2 ∬ D 1 f ( x , y ) d x   d y \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=2 \iint_{D_{1}} f(x, y) \mathrm{d} x \mathrm{~d} y Df(x,y)dx dy=2D1f(x,y)dx dy.

(3) 设 D 关于直线 y = x y=x y=x 对称, 则 ∬ D f ( x , y ) d x   d y = ∬ D f ( y , x ) d x   d y \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D} f(y, x) \mathrm{d} x \mathrm{~d} y Df(x,y)dx dy=Df(y,x)dx dy.

(4) 若区域 D D D 关于直线 y = − x y=-x y=x 对称, 则 ∬ D f ( x , y ) d x   d y = ∬ D f ( − y , − x ) d x   d y \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D} f(-y,-x) \mathrm{d} x \mathrm{~d} y Df(x,y)dx dy=Df(y,x)dx dy.

  • (1)(2)是重点,意味着出现对称的时候就可以像奇函数那样直接消掉

第二节 三重积分的概念与性质

1.三重积分的表示

lim ⁡ λ → 0 ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ v i = ∭ Ω f ( x , y , z ) d v \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i} =\iiint_{\Omega} f(x, y, z) \mathrm{d} v λ0limi=1nρ(ξi,ηi,ζi)Δvi=Ωf(x,y,z)dv

2.三重积分的性质

  • 基本跟二重积分完全相同,不再赘述

常考题型

一、二重积分

1.二重积分的计算
  • 先画图,找到积分区域,确定 x , y x,y x,y 的取值范围,然后进行偏积分

【例】 ∬ D x y   d σ \iint_{D} x \sqrt{y} \mathrm{~d} \sigma Dxy  dσ, 其中 D D D 是由两条抛物线 y = x , y = x 2 y=\sqrt{x}, y=x^{2} y=x ,y=x2 所围成的闭区域.

【解】

image-20220522121515092
X型: 0 ≤ x ≤ 1      x 2 ≤ y ≤ x 原式  = ∫ 0 1 d x ∫ x 2 x x y d y = 6 55 \text{X型:}0\le x \le1\space\space\space\space x^2\le y\le \sqrt{x} \\ \text{原式 }=\int^1_0dx\int^{\sqrt{x}}_{x^2}x\sqrt{y}dy=\frac{6}{55} X型:0x1    x2yx 原式 =01dxx2x xy dy=556

2.改变积分次序
  • 画图,重新 X / Y X/Y X/Y型区域互换

【例】改变积分次序 ∫ 0 1   d y ∫ 0 y 2 f ( x , y ) d x + ∫ 1 2   d y ∫ 0 1 − ( y − 1 ) 2 f ( x , y ) d x \int_{0}^{1} \mathrm{~d} y \int_{0}^{y^{2}} f(x, y) \mathrm{d} x+\int_{1}^{2} \mathrm{~d} y \int_{0}^{\sqrt{1-(y-1)^{2}}} f(x, y) \mathrm{d} x 01 dy0y2f(x,y)dx+12 dy01(y1)2 f(x,y)dx.

【解】

image-20220522122229829

积分区域 D D D 如图 将积分区域写成 X X X 型区域为
D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , x ⩽ y ⩽ 1 + 1 − x 2 } ,则  ∫ 0 1   d y ∫ 0 y 2 f ( x , y ) d x + ∫ 1 2   d y ∫ 0 1 − ( y − 1 ) 2 f ( x , y ) d x = ∫ 0 1   d x ∫ x 1 + 1 − x 2 f ( x , y ) d y . \begin{aligned} D=&\left\{(x, y) \mid 0 \leqslant x \leqslant 1, \sqrt{x} \leqslant y \leqslant 1+\sqrt{1-x^{2}}\right\} \text {,则 } \\ & \int_{0}^{1} \mathrm{~d} y \int_{0}^{y^{2}} f(x, y) \mathrm{d} x+\int_{1}^{2} \mathrm{~d} y \int_{0}^{\sqrt{1-(y-1)^{2}}} f(x, y) \mathrm{d} x \\ &=\int_{0}^{1} \mathrm{~d} x \int_{\sqrt{x}}^{1+\sqrt{1-x^{2}}} f(x, y) \mathrm{d} y . \end{aligned} D={(x,y)0x1,x y1+1x2 }, 01 dy0y2f(x,y)dx+12 dy01(y1)2 f(x,y)dx=01 dxx 1+1x2 f(x,y)dy.

3.极坐标法
  • 特征: (1) 被积函数 f ( x , y ) f(x, y) f(x,y) 中含 x 2 + y 2 ; ( 2 ) x^{2}+y^{2} ;(2) x2+y2;(2) 积分区域 D D D 的边界曲线含 x 2 + y 2 x^{2}+y^{2} x2+y2.

  • 方法:变换: 令 { x = ρ cos ⁡ θ , y = ρ sin ⁡ θ , \left\{\begin{array}{l}x=\rho \cos \theta, \\ y=\rho \sin \theta,\end{array}\right. {x=ρcosθ,y=ρsinθ, 区域 D D D 表示为 D = { ( ρ , θ ) ∣ α ⩽ θ ⩽ β , ρ 1 ( θ ) ⩽ ρ ⩽ ρ 2 ( θ ) } D=\left\{(\rho, \theta) \mid \alpha \leqslant \theta \leqslant \beta, \rho_{1}(\theta) \leqslant \rho \leqslant \rho_{2}(\theta)\right\} D={(ρ,θ)αθβ,ρ1(θ)ρρ2(θ)}, 则
    ∬ D f ( x , y ) d σ = ∫ a β d θ ∫ ρ 1 ( θ ) ρ 2 ( θ ) f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ   d r . \iint_{D} f(x, y) \mathrm{d} \sigma=\int_{a}^{\beta} \mathrm{d} \theta \int_{\rho_{1}(\theta)}^{\rho_{2}(\theta)} f(\rho \cos \theta, \rho \sin \theta) \rho \mathrm{~d} r . Df(x,y)dσ=aβdθρ1(θ)ρ2(θ)f(ρcosθ,ρsinθ)ρ dr.

  • 注意:变换后多乘了一个r

  • 变换时,根据积分区域图像确定 ρ \rho ρ θ \theta θ 的范围

【例】计算 I = ∬ D ( x 2 + x y ) d σ I=\iint_{D}\left(x^{2}+x y\right) \mathrm{d} \sigma I=D(x2+xy)dσ, 其中 D : x 2 + y 2 ⩽ 2 x D: x^{2}+y^{2} \leqslant 2 x D:x2+y22x.
【解】因为区域 D D D 关于 x x x 轴对称, 所以由二重积分的对称性得
I = ∬ D ( x 2 + x y ) d x   d y = ∬ D x 2   d x   d y . I=\iint_{D}\left(x^{2}+x y\right) \mathrm{d} x \mathrm{~d} y=\iint_{D} x^{2} \mathrm{~d} x \mathrm{~d} y . I=D(x2+xy)dx dy=Dx2 dx dy.
image-20220529145653121

{ x = r cos ⁡ θ , y = r sin ⁡ θ \left\{\begin{array}{l}x=r \cos \theta, \\ y=r \sin \theta\end{array}\right. {x=rcosθ,y=rsinθ, 则 D = { ( r , θ ) ∣ − π 2 ⩽ θ ⩽ π 2 , 0 ⩽ r ⩽ 2 cos ⁡ θ } D=\left\{(r, \theta) \mid-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}, 0 \leqslant r \leqslant 2 \cos \theta\right\} D={(r,θ)2πθ2π,0r2cosθ}, 于是
I = ∬ D x 2   d x   d y = ∫ − π 2 π 2   d θ ∫ 0 2 cos ⁡ θ r 3 cos ⁡ 2 θ d r = 4 ∫ − π 2 π 2 cos ⁡ 6 θ d θ = 8 ∫ 0 π 2 cos ⁡ 6 θ d θ = 8 I 6 = 8 × 5 6 × 3 4 × 1 2 × π 2 = 5 π 4 \begin{aligned} I &=\iint_{D} x^{2} \mathrm{~d} x \mathrm{~d} y=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{~d} \theta \int_{0}^{2 \cos \theta} r^{3} \cos ^{2} \theta \mathrm{d} r=4 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{6} \theta \mathrm{d} \theta \\ &=8 \int_{0}^{\frac{\pi}{2}} \cos ^{6} \theta \mathrm{d} \theta=8 I_{6}=8 \times \frac{5}{6} \times \frac{3}{4} \times \frac{1}{2} \times \frac{\pi}{2}=\frac{5 \pi}{4} \end{aligned} I=Dx2 dx dy=2π2π dθ02cosθr3cos2θdr=42π2πcos6θdθ=802πcos6θdθ=8I6=8×65×43×21×2π=45π

2.物理应用

设平面薄片 D D D 的面密度为 ρ ( x , y ) \rho(x, y) ρ(x,y), 则

  1. 质心坐标为
    x ˉ = ∬ D x ρ ( x , y ) d x   d y ∬ D ρ ( x , y ) d x   d y , y ˉ = ∬ D y ρ ( x , y ) d x   d y ∬ D ρ ( x , y ) d x   d y . \bar{x}=\frac{\iint_{D} x \rho(x, y) \mathrm{d} x \mathrm{~d} y}{\iint_{D} \rho(x, y) \mathrm{d} x \mathrm{~d} y}, \quad \bar{y}=\frac{\iint_{D} y \rho(x, y) \mathrm{d} x \mathrm{~d} y}{\iint_{D} \rho(x, y) \mathrm{d} x \mathrm{~d} y} . xˉ=Dρ(x,y)dx dyDxρ(x,y)dx dy,yˉ=Dρ(x,y)dx dyDyρ(x,y)dx dy.
  2. 转动惯量
  • D D D x x x 轴的转动惯量为 I x = ∬ D y 2 ρ ( x , y ) d x   d y I_{x}=\iint_{D} y^{2} \rho(x, y) \mathrm{d} x \mathrm{~d} y Ix=Dy2ρ(x,y)dx dy.
  • D D D y y y 轴的转动惯量为 I y = ∬ D D x 2 ρ ( x , y ) d x   d y I_{y}=\iint_{D}^{D} x^{2} \rho(x, y) \mathrm{d} x \mathrm{~d} y Iy=DDx2ρ(x,y)dx dy.
  • D D D 绕原点的转动惯量为 I O = ∬ D ( x 2 + y 2 ) ρ ( x , y ) d x   d y I_{O}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) \mathrm{d} x \mathrm{~d} y IO=D(x2+y2)ρ(x,y)dx dy.
  • M ( x , y ) M(x, y) M(x,y) 为区域 D D D 上一点, l l l 为一条直线, M M M 到直线 l l l 的距离为 d d d, 则 D D D 绕直线 l l l 的 转动惯量为 I l = ∬ D d 2 ρ ( x , y ) d x   d y I_{l}=\iint_{D} d^{2} \rho(x, y) \mathrm{d} x \mathrm{~d} y Il=Dd2ρ(x,y)dx dy.

二、三重积分

1.三重积分的计算
①切片法(先二后一)

Ω \Omega Ω 表示为 Ω = { ( x , y , z ) ∣ ( x , y ) ∈ D z , c ⩽ z ⩽ d } \Omega=\left\{(x, y, z) \mid(x, y) \in D_{z}, c \leqslant z \leqslant d\right\} Ω={(x,y,z)(x,y)Dz,czd}, 如图

理解:先把 z z z 看成一个常数,然后直接对 x y xy xy 二重积分
∭ Ω f ( x , y , z ) d v = ∫ c d   d z ∬ D c f ( x , y , z ) d x   d y . \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\int_{c}^{d} \mathrm{~d} z \iint_{D_{c}} f(x, y, z) \mathrm{d} x \mathrm{~d} y . Ωf(x,y,z)dv=cd dzDcf(x,y,z)dx dy.
image-20220702150852873

【例】计算 ∬ Ω ( z 2 + 2 x y ) d v \iint_{\Omega}\left(z^{2}+2 x y\right) \mathrm{d} v Ω(z2+2xy)dv, 其中 Ω \Omega Ω 为雉面 z = x 2 + y 2 z=\sqrt{x^{2}+y^{2}} z=x2+y2 z = 2 z=2 z=2 所围成的几何体.

【解】由对称性得 ∭ Ω ( z 2 + 2 x y ) d v = ∭ Ω z 2   d v \iiint_{\Omega}\left(z^{2}+2 x y\right) \mathrm{d} v=\iiint_{\Omega} z^{2} \mathrm{~d} v Ω(z2+2xy)dv=Ωz2 dv, 令 Ω = { ( x , y , z ) ∣ ( x , y ) ∈ D z , 0 ⩽ z ⩽ 2 } \Omega=\left\{(x, y, z) \mid(x, y) \in D_{z}, 0 \leqslant z \leqslant 2\right\} Ω={(x,y,z)(x,y)Dz,0z2}, 其中 D z = { ( x , y ) ∣ x 2 + y 2 ⩽ z 2 } D_{z}=\left\{(x, y) \mid x^{2}+y^{2} \leqslant z^{2}\right\} Dz={(x,y)x2+y2z2}, 则
∭ Ω ( z 2 + 2 x y ) d v = ∬ Ω z 2   d v = ∫ 0 2 z 2   d z ∬ D z   d x   d y = ∫ 0 2 z 2 ⋅ π z 2   d z = 32 π 5 . \begin{aligned} \iiint_{\Omega}\left(z^{2}+2 x y\right) \mathrm{d} v &=\iint_{\Omega} z^{2} \mathrm{~d} v=\int_{0}^{2} z^{2} \mathrm{~d} z \iint_{D_{z}} \mathrm{~d} x \mathrm{~d} y \\ &=\int_{0}^{2} z^{2} \cdot \pi z^{2} \mathrm{~d} z=\frac{32 \pi}{5} . \end{aligned} Ω(z2+2xy)dv=Ωz2 dv=02z2 dzDz dx dy=02z2πz2 dz=532π.

②铅直投影法(先一后二)

Ω \Omega Ω 表示为 Ω = { ( x , y , z ) ∣ ( x , y ) ∈ D , φ 1 ( x , y ) ⩽ z ⩽ φ 2 ( x , y ) } \Omega=\left\{(x, y, z) \mid(x, y) \in D, \varphi_{1}(x, y) \leqslant z \leqslant \varphi_{2}(x, y)\right\} Ω={(x,y,z)(x,y)D,φ1(x,y)zφ2(x,y)}, 如图

理解:先积 z z z 使得三重积分降为二重积分,再运用二重积分的计算
∭ Ω f ( x , y , z ) d v = ∬ D   d x   d y ∫ φ 1 ( x , y ) φ 2 ( x , y ) f ( x , y , z ) d z . \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\iint_{D} \mathrm{~d} x \mathrm{~d} y \int_{\varphi_{1}(x, y)}^{\varphi_{2}(x, y)} f(x, y, z) \mathrm{d} z . Ωf(x,y,z)dv=D dx dyφ1(x,y)φ2(x,y)f(x,y,z)dz.
image-20220702151337704

【例】计算 ∭ Ω x d x d y d z \iiint_\Omega x d x d y d z Ωxdxdydz ,其中 Ω \Omega Ω x + 2 y + z = 1 x+2y+z=1 x+2y+z=1 与坐标轴相交的平面

在这里插入图片描述

【解】令 $z=1-x-2y $ 原积分化为
原式 = ∬ [ ∫ D x y 1 − x − 2 y x d z ] d x d y 原式=\iint\left[\int_{D_{x y}}^{1-x-2 y} x d z\right] d x d y 原式=[Dxy1x2yxdz]dxdy
降维打击:令 z = 0 z=0 z=0 得到积分区域 D : x + 2 y = 1 D:x+2y=1 D:x+2y=1 与坐标轴围成的区域

image-20220702151848713
0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 − x − 2 y ∬ [ ∫ D x y 1 − x − 2 y x d z ] d x d y = ∫ 0 1 d x ∫ 0 1 − x 2 d y ∫ 0 1 − x − 2 y x d z 0≤x≤1,0≤y≤1-x-2y \\ \iint\left[\int_{D_{x y}}^{1-x-2 y} x d z\right] d x d y=\int_{0}^{1} d x \int_{0}^{\frac{1-x}{2}} d y \int_{0}^{1-x-2 y} x d z 0x10y1x2y[Dxy1x2yxdz]dxdy=01dx021xdy01x2yxdz

2.柱面坐标转换法

{ x = r cos ⁡ θ , y = r sin ⁡ θ , z = z \left\{\begin{array}{l}x=r \cos \theta, \\ y=r \sin \theta, \\ z=z\end{array}\right. x=rcosθ,y=rsinθ,z=z  其中  Ω = { ( r , θ , z ) ∣ α ⩽ θ ⩽ β , r 1 ( θ ) ⩽ r ⩽ r 2 ( θ ) , φ 1 ( r , θ ) ⩽ z ⩽ φ 2 ( r , θ ) } ,则  \text { 其中 } \Omega=\left\{(r, \theta, z) \mid \alpha \leqslant \theta \leqslant \beta, r_{1}(\theta) \leqslant r \leqslant r_{2}(\theta), \varphi_{1}(r, \theta) \leqslant z \leqslant \varphi_{2}(r, \theta)\right\} \text {,则 }  其中 Ω={(r,θ,z)αθβ,r1(θ)rr2(θ),φ1(r,θ)zφ2(r,θ)}, 
∭ Ω f ( x , y , z ) d v = ∫ a β d θ ∫ r 1 ( θ ) r 2 ( θ ) r   d r ∫ φ 1 ( r , θ ) φ 2 ( r , θ ) f ( r cos ⁡ θ , r sin ⁡ θ , z ) d z . \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\int_{a}^{\beta} \mathrm{d} \theta \int_{r_{1}(\theta)}^{r_{2}(\theta)} r \mathrm{~d} r \int_{\varphi_{1}(r, \theta)}^{\varphi_{2}(r, \theta)} f(r \cos \theta, r \sin \theta, z) \mathrm{d} z . Ωf(x,y,z)dv=aβdθr1(θ)r2(θ)r drφ1(r,θ)φ2(r,θ)f(rcosθ,rsinθ,z)dz.

  • 注意,这里凭空多了个 r r r

【例】求 ∭ Ω z d x d y d z \iiint_{\Omega} z d x d y d z Ωzdxdydz 其中 Ω : z = x 2 + y 2 与 z = 4 \Omega :z=x^2+y^2与z=4 Ω:z=x2+y2z=4

image-20220702153612192

【解】 { x = r cos ⁡ θ , y = r sin ⁡ θ , z = z \left\{\begin{array}{l}x=r \cos \theta, \\ y=r \sin \theta, \\ z=z\end{array}\right. x=rcosθ,y=rsinθ,z=z D x y = { ( ρ , θ ) ∣ 0 ⩽ ρ ⩽ 2 0 ⩽ θ ⩽ 2 π } D_{x y}=\{(\rho, \theta) \mid \quad 0 \leqslant \rho \leqslant 2 \quad 0 \leqslant \theta \leqslant 2 \pi\} Dxy={(ρ,θ)0ρ20θ2π} ρ 2 ⩽ 2 ⩽ 4 \rho^{2} \leqslant 2 \leqslant 4 ρ224
原式 = ∫ 0 2 π d θ ∫ 0 2 d p ∫ ρ 2 4 ⋅ z d z = ∫ 0 2 π d θ ∫ 0 2 ρ ( 8 − 1 2 ρ 4 ) d ρ 原式=\int_{0}^{2 \pi} d \theta \int_{0}^{2} d p \int_{\rho^{2}}^{4} \cdot z d z=\int_{0}^{2 \pi} d \theta \int_{0}^{2} \rho\left(8-\frac{1}{2} \rho^{4}\right) d \rho 原式=02πdθ02dpρ24zdz=02πdθ02ρ(821ρ4)dρ

3.球面坐标投影法

{ x = r cos ⁡ θ sin ⁡ φ , y = r sin ⁡ θ sin ⁡ φ , 其中  α ⩽ θ ⩽ β , θ 1 ⩽ φ ⩽ θ 2 , r 1 ( φ , θ ) ⩽ r ⩽ r 2 ( φ , θ ) , 则  z = r cos ⁡ φ , \left\{\begin{array}{l}x=r \cos \theta \sin \varphi, \\ y=r \sin \theta \sin \varphi \text {, 其中 } \alpha \leqslant \theta \leqslant \beta, \theta_{1} \leqslant \varphi \leqslant \theta_{2}, r_{1}(\varphi, \theta) \leqslant r \leqslant r_{2}(\varphi, \theta) \text {, 则 } \\ z=r \cos \varphi,\end{array}\right. x=rcosθsinφ,y=rsinθsinφ其中 αθβ,θ1φθ2,r1(φ,θ)rr2(φ,θ) z=rcosφ,
∬ Ω f ( x , y , z ) d x   d y   d z = ∫ a β d θ ∫ θ 1 θ 2   d φ ∫ r 1 ( φ , θ ) r 2 ( φ , θ ) f ( r cos ⁡ θ sin ⁡ φ , r sin ⁡ θ sin ⁡ φ , r cos ⁡ φ ) r 2 sin ⁡ φ d r . \iint_{\Omega} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\int_{a}^{\beta} \mathrm{d} \theta \int_{\theta_{1}}^{\theta_{2}} \mathrm{~d} \varphi \int_{r_{1}(\varphi, \theta)}^{r_{2}(\varphi, \theta)} f(r \cos \theta \sin \varphi, r \sin \theta \sin \varphi, r \cos \varphi) r^{2} \sin \varphi \mathrm{d} r . Ωf(x,y,z)dx dy dz=aβdθθ1θ2 dφr1(φ,θ)r2(φ,θ)f(rcosθsinφ,rsinθsinφ,rcosφ)r2sinφdr.

  • 注意,这里凭空多了个 r 2 s i n φ r^2sin\varphi r2sinφ
  • θ \theta θ 是降维打击后与 x x x 正半轴的夹角
  • φ \varphi φ 是与 z z z 正半轴的夹角

在这里插入图片描述

【例】计算三重积分 ∭ Ω ( x 2 + y 2 + z 2 ) d x   d y   d z \iiint_{\Omega}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z Ω(x2+y2+z2)dx dy dz, 其中 Ω \Omega Ω 为雉面 z = x 2 + y 2 z=\sqrt{x^{2}+y^{2}} z=x2+y2 与球面 x 2 + y 2 + z 2 = R 2 x^{2}+y^{2}+z^{2}=R^{2} x2+y2+z2=R2 所围立体.

在这里插入图片描述

【解】
原式 = ∫ 0 2 π d θ ∫ 0 π 4 d φ ∫ 0 R r 2 ⋅ r 2 sin ⁡ φ d r = ∫ 0 2 π d θ ∫ 0 π 4 1 5 r 5 sin ⁡ φ ∣ 0 R d φ = 1 5 π R 5 ( 2 − 2 ) \begin{aligned} 原式&=\int_{0}^{2 \pi} d \theta \int_{0}^{\frac{\pi}{4}} d \varphi \int_{0}^{R } r^{2}\cdot r^{2} \sin \varphi d r \\ &=\left.\int_{0}^{2 \pi} d \theta \int_{0}^{\frac{\pi}{4}} \frac{1}{5} r^{5} \sin \varphi\right|_{0} ^{R} d \varphi \\ &=\frac{1}{5} \pi R^{5}(2-\sqrt{2}) \end{aligned} 原式=02πdθ04πdφ0Rr2r2sinφdr=02πdθ04π51r5sinφ 0Rdφ=51πR5(22 )

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值