高等数学 第八章 向量代数和空间解析几何

第八章 向量代数和空间解析几何

——made by njtech Melody

一、基本概念

(若高中学过则仅一带而过)

  1. 向量——既有大小又有方向的量
  2. 向量的数量积

a ⃗ ⋅ b ⃗ = a 1 a 2 + b 1 b 2 + c 1 c 2 . \vec{a} \cdot \vec{b}=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} . a b =a1a2+b1b2+c1c2.
5. 向量的向量积
5.

a ⃗ × b ⃗ = ∣ i ⃗ j ⃗ k ⃗ a 1 b 1 c 1 a 2 b 2 c 2 ∣ = { ∣ b 1 c 1 b 2 c 2 ∣ , − ∣ a 1 c 1 a 2 c 2 ∣ , ∣ a 1 b 1 a 2 b 2 ∣ } . \vec{a} \times \vec{b}=\left|\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{array}\right|=\left\{\left|\begin{array}{cc} b_{1} & c_{1} \\ b_{2} & c_{2} \end{array}\right|,-\left |\begin{array}{cc} a_{1} & c_{1} \\ a_{2} & c_{2} \end{array}\right|,\left|\begin{array}{ll} a_{1} & b_{1} \\ a_{2} & b_{2} \end{array}\right|\right\} . a ×b = i a1a2j b1b2k c1c2 ={ b1b2c1c2 , a1a2c1c2 , a1a2b1b2 }.

  • 满足分配律: ( a ⃗ + b ⃗ ) × c ⃗ = a ⃗ × c ⃗ + b ⃗ × c ⃗ (\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c} (a +b )×c =a ×c +b ×c
  1. 向量的混合积

 设  a ⃗ = ( a x , a y , a z ) , b ⃗ = ( b x , b y , b z ) , c ⃗ = ( c x , c y , c z ) [ a ⃗   b ⃗   c ⃗ ] = ( a ⃗ × b ⃗ ) ⋅ c ⃗ = ∣ a x a y a z b x b y b z c x c y C z ∣ \text { 设 } \vec{a}=\left(a_{x}, a_{y}, a_{z}\right), \vec{b}=\left(b_{x}, b_{y}, b_{z}\right), \vec{c}=\left(c_{x}, c_{y}, c_{z}\right)\\ {[\vec{a} \space \vec{b} \space \vec{c}] } =(\vec{a} \times \vec{b}) \cdot \vec{c}= \left|\begin{array}{ccc} \boldsymbol{a}_{\boldsymbol{x}} & \boldsymbol{a}_{\boldsymbol{y}} & \boldsymbol{a}_{z} \\ \boldsymbol{b}_{\boldsymbol{x}} & \boldsymbol{b}_{\boldsymbol{y}} & \boldsymbol{b}_{z} \\ \boldsymbol{c}_{\boldsymbol{x}} & \boldsymbol{c}_{\boldsymbol{y}} & \mathcal{C}_{\boldsymbol{z}} \end{array}\right|   a =(ax,ay,az),b =(bx,by,bz),c =(cx,cy,cz)[a  b  c ]=(a ×b )c = axbxcxaybycyazbzCz

​ 性质:

​ (1) 三个非零向量 a ⃗ , b ⃗ , c ⃗ \vec{a}, \vec{b}, \vec{c} a ,b ,c 共面的充要条件是
[ a ⃗   b ⃗   c ⃗ ] = 0 [\vec{a} \space \vec{b} \space \vec{c}]=0 [a  b  c ]=0
​ (2) 轮换对称性 :
[ a ⃗   b ⃗   c ⃗ ] = [ b ⃗   c ⃗   a ⃗ ] = [ c ⃗   a ⃗   b ⃗ ] [\vec{a} \space \vec{b} \space \vec{c}]=[\vec{b} \space \vec{c} \space \vec{a}]=[\vec{c} \space \vec{a} \space \vec{b}] [a  b  c ]=[b  c  a ]=[c  a  b ]

  1. 向量关系:

a ⃗ / / b ⃗ ⇄ a ⃗ × b ⃗ = 0 → ⇄ b x a x = b y a y = b z a z a ⃗ ⊥ b ⃗ ⇄ a ⃗ ⋅ b ⃗ = 0 ⇄ a x b x + a y b y + a z b z = 0 a ⃗ , b ⃗ , c ⃗  共面  ⇄ ( a ⃗ × b ⃗ ) ⋅ c ⃗ = 0 ⇄ ∣ a x a y a z b x b y b z c x c y c z ∣ = 0 \begin{aligned} \vec{a} / / \vec{b} \rightleftarrows \vec{a} \times \vec{b}=\overrightarrow{0} &\rightleftarrows \frac{b_{x}}{a_{x}}=\frac{b_{y}}{a_{y}}=\frac{b_{z}}{a_{z}}\\ \vec{a} \perp \vec{b} &\rightleftarrows \vec{a} \cdot \vec{b}=0 \rightleftarrows a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=0\\ \vec{a}, \vec{b}, \vec{c} \text { 共面 }& \rightleftarrows(\vec{a} \times \vec{b}) \cdot \vec{c}=0\\ &\rightleftarrows\left|\begin{array}{lll} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{array}\right|=0 \end{aligned} a //b a ×b =0 a b a ,b ,c  共面 axbx=ayby=azbza b =0axbx+ayby+azbz=0(a ×b )c =0 axbxcxaybycyazbzcz =0

8.方向余弦与方向角

  • 给定 r ⃗ = ( x , y , z ) ≠ 0 → \vec{r}=(x, y, z) \neq \overrightarrow{0} r =(x,y,z)=0 , 称 r ⃗ \vec{r} r 与三坐标轴的夹角 α , β , γ \alpha, \beta, \gamma α,β,γ 为其方向角.

  • 方向角的余弦称为其方向余弦.

cos ⁡ α = x ∣ r ⃗ ∣ = x x 2 + y 2 + z 2  与x轴的夹角 cos ⁡ β = y ∣ r ⃗ ∣ = y x 2 + y 2 + z 2  与y轴的夹角 cos ⁡ γ = z ∣ r ⃗ ∣ = z x 2 + y 2 + z 2  与z轴的夹角 \begin{aligned} &\cos \alpha=\frac{x}{|\vec{r}|}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \text{ 与x轴的夹角}\\ &\cos \beta=\frac{y}{|\vec{r}|}=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}} \text{ 与y轴的夹角}\\ &\cos \gamma=\frac{z}{|\vec{r}|}=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\text{ 与z轴的夹角} \end{aligned} cosα=r x=x2+y2+z2 x x轴的夹角cosβ=r y=x2+y2+z2 y y轴的夹角cosγ=r z=x2+y2+z2 z z轴的夹角

二、平面

1.平面的点法式方程

M 0 ( x 0 , y 0 , z 0 ) ∈ π M_{0}\left(x_{0}, y_{0}, z_{0}\right) \in \pi M0(x0,y0,z0)π, 又非零向量 n ⃗ = { A , B , C } ⊥ π \vec{n}=\{A, B, C\} \perp \pi n ={A,B,C}π, 则平面 π \pi π 的方程为
π : A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0. \pi: A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 . π:A(xx0)+B(yy0)+C(zz0)=0.

  • 点法式方程,顾名思义由点和法向量构成的方程 F ( x , y , z ) = 0 F( x, y, z ) = 0 F(x,y,z)=0

2.平面的一般式方程

π : A x + B y + C z + D = 0 ,  其中  n ⃗ = { A , B , C }  为平面  π  的法向量.  \pi: A x+B y+C z+D=0, \text { 其中 } \vec{n}=\{A, B, C\} \text { 为平面 } \pi \text { 的法向量. } π:Ax+By+Cz+D=0, 其中 n ={A,B,C} 为平面 π 的法向量

3.平面的截距式方程

设平而 π \pi π 与三个坐标轴的交点分別为 A ( a , 0 , 0 ) , B ( 0 , b , 0 ) , C ( 0 , 0 , c ) A(a, 0,0), B(0, b, 0), C(0,0, c) A(a,0,0),B(0,b,0),C(0,0,c), 其中 a , b , c a, b, c a,b,c 为非零常数, 则平面 π \pi π 的方程为
π : x a + y b + z c = 1 \pi: \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 π:ax+by+cz=1

三、直线

1.空间直线的一般式方程

L : { A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0. L:\left\{\begin{array}{l} A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \\ A_{2} x+B_{2} y+C_{2} z+D_{2}=0 . \end{array}\right. L:{A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0.

  • 两个平面的交线 L L L

2.直线的点向式 (对称式) 方程

设向量 s ⃗ = { m , n , p } / / L \vec{s}=\{m, n, p\} / / L s ={m,n,p}//L, 点 M 0 ( x 0 , y 0 , z 0 ) ∈ L M_{0}\left(x_{0}, y_{0}, z_{0}\right) \in L M0(x0,y0,z0)L, 则直线 L L L 的点向式方程为
L : x − x 0 m = y − y 0 n = z − z 0 p .  L: \frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p} \text {. } L:mxx0=nyy0=pzz0

  • 点向式方程,顾名思义由点和方向向量构成的方程

3.直线的参数式方程

空间直线的参数式方程为
L : { x = x 0 + m t , y = y 0 + n t ,  其中  s ⃗ = { m , n , p } / / L , M 0 ( x 0 , y 0 , z 0 ) ∈ L .  z = z 0 + p t , L:\left\{\begin{array}{l}x=x_{0}+m t, \\ y=y_{0}+n t, \text { 其中 } \vec{s}=\{m, n, p\} / / L, M_{0}\left(x_{0}, y_{0}, z_{0}\right) \in L \text {. } \\ z=z_{0}+p t,\end{array}\right. L: x=x0+mt,y=y0+nt, 其中 s ={m,n,p}//L,M0(x0,y0,z0)Lz=z0+pt,

  • 点向式方程和参数式方程可以互相转换

4.平面束方程

设直线 L L L 由方程组 { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \left\{\begin{array}{l}A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \\ A_{2} x+B_{2} y+C_{2} z+D_{2}=0\end{array}\right. {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 确定

通过定直线的所有平面所构成的集合称为平面束。
A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 A_{1} x+B_{1} y+C_{1} z+D_{1}+\lambda\left(A_{2} x+B_{2} y+C_{2} z+D_{2}\right)=0 A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0
image-20220522110944413

  • 由平面束方程可以找到一个平面的含参法向量 n ⃗ = ( A 1 + λ A 2 , B 1 + λ B 2 , C 1 + λ C 2 ) \vec{n} =(A_1+\lambda A_2,B_1+\lambda B_2,C_1+\lambda C_2) n =(A1+λA2,B1+λB2,C1+λC2) 找到合理的条件就可以求出平面

四、距离

1.点到点的距离

设两点 M 1 , M 2 M_{1}, M_{2} M1,M2 的坐标为 M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) M_{1}\left(x_{1}, y_{1}, z_{1}\right), M_{2}\left(x_{2}, y_{2}, z_{2}\right) M1(x1,y1,z1),M2(x2,y2,z2), 则这两点之间的距离为
d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( z 2 − z 1 ) 2 .  d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \text {. } d=(x2x1)2+(y2y1)2+(z2z1)2

2.点到平面的距离

设点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0), 平面 π : A x + B y + C z + D = 0 \pi: A x+B y+C z+D=0 π:Ax+By+Cz+D=0, 则点 M 0 M_{0} M0 到平面 π \pi π 的距离为
d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{\left|A x_{0}+B y_{0}+C z_{0}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} d=A2+B2+C2 Ax0+By0+Cz0+D

3.点到直线的距离

设点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0), 直线 L : x − x 1 m = y − y 1 n = z − z 1 p L: \frac{x-x_{1}}{m}=\frac{y-y_{1}}{n}=\frac{z-z_{1}}{p} L:mxx1=nyy1=pzz1, 则点 M 0 M_{0} M0 到直线 L L L 的距离为
d = ∣ s ⃗ × M 0 M 1 → ∣ ∣ s ⃗ ∣ d=\frac{\left|\vec{s} \times \overrightarrow{M_{0} M_{1}}\right|}{|\vec{s}|} d=s s ×M0M1
 其中  M 1 ( x 1 , y 1 , z 1 ) ∈ L , s ⃗ = { m , n , p } . \text { 其中 } M_{1}\left(x_{1}, y_{1}, z_{1}\right) \in L, \vec{s}=\{m, n, p\} .  其中 M1(x1,y1,z1)L,s ={m,n,p}.

4.两平行平面之间的距离

π 1 : A x + B y + C z + D 1 = 0 , π 2 : A x + B y + C z + D 2 = 0 \pi_{1}: A x+B y+C z+D_{1}=0, \pi_{2}: A x+B y+C z+D_{2}=0 π1:Ax+By+Cz+D1=0,π2:Ax+By+Cz+D2=0 为两平行平面, 则平面 π 1 \pi_{1} π1 π 2 \pi_{2} π2 之间的距离为
d = ∣ D 2 − D 1 ∣ A 2 + B 2 + C 2 d=\frac{\left|D_{2}-D_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} d=A2+B2+C2 D2D1

五、夹角

1.两向量之间的夹角

α ⃗ , β ⃗ \vec{\alpha}, \vec{\beta} α ,β 为两个向量,则 α ⃗ , β ⃗ \vec{\alpha}, \vec{\beta} α ,β 的夹角为
c o s θ = α ⃗ ⋅ β ⃗ ∣ a ⃗ ∣ ∣ β ⃗ ∣ cos\theta= \frac{\vec{\alpha} \cdot \vec{\beta}}{|\vec{a}||\vec{\beta}|} cosθ=a ∣∣β α β

2.两直线之间的夹角

L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 , L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_{1}: \frac{x-x_{1}}{m_{1}}=\frac{y-y_{1}}{n_{1}}=\frac{z-z_{1}}{p_{1}}, L_{2}: \frac{x-x_{2}}{m_{2}}=\frac{y-y_{2}}{n_{2}}=\frac{z-z_{2}}{p_{2}} L1:m1xx1=n1yy1=p1zz1,L2:m2xx2=n2yy2=p2zz2 为两条直线.

s 1 → = { m 1 \overrightarrow{s_{1}}=\left\{m_{1}\right. s1 ={m1, n 1 , p 1 } , s 2 → = { m 2 , n 2 , p 2 } \left.n_{1}, p_{1}\right\}, \overrightarrow{s_{2}}=\left\{m_{2}, n_{2}, p_{2}\right\} n1,p1},s2 ={m2,n2,p2} 为直线 L 1 L_{1} L1 L 2 L_{2} L2 的方向向量

L 1 L_{1} L1 L 2 L_{2} L2 的夹角为
c o s θ = ∣ s 1 → ⋅ s 2 → ∣ ∣ s 1 → ∣ ∣ s 2 → ∣ cos\theta= \frac{\left|\overrightarrow{s_{1}} \cdot \overrightarrow{s_{2}}\right|}{\left|\overrightarrow{s_{1}}\right|\left|\overrightarrow{s_{2}}\right|} cosθ= s1 s2 s1 s2

3.两平面之间的夹角

π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 , π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 \pi_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \pi_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0 π1:A1x+B1y+C1z+D1=0,π2:A2x+B2y+C2z+D2=0 为两个平面, n 1 → = { A 1 \overrightarrow{n_{1}}=\left\{A_{1}\right. n1 ={A1, B 1 , C 1 } , n 2 → = { A 2 , B 2 , C 2 } \left.B_{1}, C_{1}\right\}, \overrightarrow{n_{2}}=\left\{A_{2}, B_{2}, C_{2}\right\} B1,C1},n2 ={A2,B2,C2} 为平面 π 1 \pi_{1} π1 π 2 \pi_{2} π2 的法向量

则平面 π 1 \pi_{1} π1 π 2 \pi_{2} π2 的夹角为
c o s θ = ∣ n 1 → ⋅ n 2 → ∣ ∣ n 1 → ∣ ∣ n 2 → ∣ . cos\theta= \frac{\left|\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}\right|}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|} . cosθ= n1 n2 n1 n2 .

4.直线与平面之间的夹角

设直线 L : x − x 0 m = y − y 0 n = z − z 0 p L: \frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p} L:mxx0=nyy0=pzz0, 平面 π : A x + B y + C z + D = 0 \pi: A x+B y+C z+D=0 π:Ax+By+Cz+D=0

s ⃗ = { m , n , p } \vec{s}=\{m, n, p\} s ={m,n,p} n ⃗ \vec{n} n = { A , B , C } =\{A, B, C\} ={A,B,C} 分别为直线 L L L 的方向向量和平面 π \pi π 的法向量

则直线 L L L 与平面 π \pi π 之间的夹角为
s i n φ = ∣ s ⃗ ⋅ n ⃗ ∣ ∣ s ⃗ ∣ ∣ n ⃗ ∣ sin\varphi=\frac{|\vec{s} \cdot \vec{n}|}{|\vec{s}||\vec{n}|} sinφ=s ∣∣n s n

五、投影

1.线线投影

设两个非零向量 a ⃗ \vec{a} a β ⃗ \vec{\beta} β 的夹角为 θ \theta θ ,则将 ∣ β ⃗ ∣ ⋅ cos ⁡ θ |\vec{\beta}| \cdot \cos \theta β cosθ 叫做向量 β ⃗ \vec{\beta} β 在向量 $ 方向上|\vec{a}|$的投影或称标投影 (scalar projection) 。
l = ∣ β ⃗ ∣ cos ⁡ θ = c o s θ = α ⃗ ⋅ β ⃗ ∣ a ⃗ ∣ l=|\vec{\beta}| \cos \theta=cos\theta= \frac{\vec{\alpha} \cdot \vec{\beta}}{|\vec{a}|} l=β cosθ=cosθ=a α β
image-20220522093514274

六、旋转曲面

(1) 设曲线 L : { f ( x , y ) = 0 , z = 0 L:\left\{\begin{array}{l}f(x, y)=0, \\ z=0\end{array}\right. L:{f(x,y)=0,z=0 x O y x O y xOy 平面内的曲线, 则曲线 L L L x x x 轴旋转而成的曲面为
Σ x : f ( x , ± y 2 + z 2 ) = 0 ; \Sigma_{x}: f\left(x, \pm \sqrt{y^{2}+z^{2}}\right)=0 ; Σx:f(x,±y2+z2 )=0;
(2) 曲线 L L L y y y 轴旋转而成的曲面为
Σ y : f ( ± x 2 + z 2 , y ) = 0 \Sigma_{y}: f\left(\pm \sqrt{x^{2}+z^{2}}, y\right)=0 Σy:f(±x2+z2 ,y)=0
image-20220520221540310

  • 绕什么轴,什么变量不变,把另外一个变量替换

七、柱面

母线平行于坐标轴的柱面

(1) Σ : f ( x , y ) = 0 \Sigma: f(x, y)=0 Σ:f(x,y)=0 为母线平行于 z z z 轴的柱面;

(2) Σ : f ( y , z ) = 0 \Sigma: f(y, z)=0 Σ:f(y,z)=0 为母线平行于 x x x 轴的柱面;

(3) Σ : f ( z , x ) = 0 \Sigma: f(z, x)=0 Σ:f(z,x)=0 为母线平行于 y y y 轴的柱面.

1.圆柱面

  • 满足方程 x 2 + y 2 = R 2 x^{2}+y^{2}=R^{2} x2+y2=R2

image-20220520221656470

2.抛物柱面

  • 满足方程 y 2 = 2 p x y^2=2px y2=2px

image-20220520222226953

3.椭圆柱面

  • 满足方程 x 2 a 2 + y 2 b 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 a2x2+b2y2=1

image-20220520222447162

八、二次曲面

三元二次方程,如:
A x 2 + B y 2 + C z 2 + D x y + E y x + F z x + G x + H y + I z + J = 0 ( 二次项系数不全为 0 ) \begin{aligned} A x^{2}+B y^{2}+C z^{2}+D x y+E y x+F z x +G x+H y+I z+J=0 \\ (二次项系数不全为 0 ) \end{aligned} Ax2+By2+Cz2+Dxy+Eyx+Fzx+Gx+Hy+Iz+J=0(二次项系数不全为0)
的图形通常为二次曲面. 其基本类型有:椭球面、拋物面、双曲面、锥面

研究二次曲面特性的基本方法:截痕法。

1.椭球面

x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 ( a , b , c  为正数  ) \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad(a, b, c \text { 为正数 }) a2x2+b2y2+c2z2=1(a,b,c 为正数 )

image-20220520223230630

  • a = b a=b a=b 时为旋转椭球面 a = b = c a=b=c a=b=c 时为球面

  • 截痕之后是个椭圆

2.抛物面

x 2 2 p + y 2 2 q = z ( p  与  q  同号)  \frac{x^{2}}{2 p}+\frac{y^{2}}{2 q}=z \quad(p \text { 与 } q \text { 同号) } 2px2+2qy2=z(p  q 同号

image-20220520223433278

  • p = q p=q p=q 时为旋转抛物面

  • 截痕之后,纵切是抛物线,横切是圆

3.双曲抛物面(马鞍面)

− x 2 2 p + y 2 2 q = z  (  p  与  q  同号)  -\frac{x^{2}}{2 p}+\frac{y^{2}}{2 q}=z \text { ( } p \text { 与 } q \text { 同号) } 2px2+2qy2=z ( p  q 同号
image-20220520223912970

4.单叶双曲面

x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 ( a , b , c  为正数  ) \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1(a, b, c \text { 为正数 }) a2x2+b2y2c2z2=1(a,b,c 为正数 )

image-20220520224059608

  • 截痕之后,中心纵切是双曲线,沿 ∣ y ∣ = b |y|=b y=b 纵切是相交直线,沿 ∣ y ∣ > b |y|>b y>b 纵切是双曲线

5.双叶双曲线

x 2 a 2 + y 2 b 2 − z 2 c 2 = − 1 ( a , b , c  为正数)  \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1 \text{$(a, b, c$ 为正数) } a2x2+b2y2c2z2=1(a,b,c 为正数
image-20220520224723837

  • 截痕之后,横切是椭圆,纵切是双曲线

Warning:单叶双曲线和双叶双曲线的区别仅仅右边的常系数!!!

6.椭圆锥面

x 2 a 2 + y 2 b 2 = z 2 (  a , b  为正数) \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z^{2} \text{( $a, b$ 为正数)} a2x2+b2y2=z2a,b 为正数)

image-20220520225457312

  • 截痕之后,横切是椭圆,纵切是直线

九、常考题型

基本运算在高中已经学过,基本上大部分基础题都能啃老本写出来,不再赘述,这里主要分享大学的知识点

1.向量运算

①混合积

 设  a ⃗ = ( a x , a y , a z ) , b ⃗ = ( b x , b y , b z ) , c ⃗ = ( c x , c y , c z ) [ a ⃗   b ⃗   c ⃗ ] = ( a ⃗ × b ⃗ ) ⋅ c ⃗ = ∣ a x a y a z b x b y b z c x c y C z ∣ \text { 设 } \vec{a}=\left(a_{x}, a_{y}, a_{z}\right), \vec{b}=\left(b_{x}, b_{y}, b_{z}\right), \vec{c}=\left(c_{x}, c_{y}, c_{z}\right)\\ {[\vec{a} \space \vec{b} \space \vec{c}] } =(\vec{a} \times \vec{b}) \cdot \vec{c}= \left|\begin{array}{ccc} \boldsymbol{a}_{\boldsymbol{x}} & \boldsymbol{a}_{\boldsymbol{y}} & \boldsymbol{a}_{z} \\ \boldsymbol{b}_{\boldsymbol{x}} & \boldsymbol{b}_{\boldsymbol{y}} & \boldsymbol{b}_{z} \\ \boldsymbol{c}_{\boldsymbol{x}} & \boldsymbol{c}_{\boldsymbol{y}} & \mathcal{C}_{\boldsymbol{z}} \end{array}\right|   a =(ax,ay,az),b =(bx,by,bz),c =(cx,cy,cz)[a  b  c ]=(a ×b )c = axbxcxaybycyazbzCz

  • 三向量共线,则 [ a ⃗   b ⃗   c ⃗ ] = 0 [\vec{a} \space \vec{b} \space \vec{c}]=0 [a  b  c ]=0
  • 注意格式
  • 轮换对称性 [ a ⃗   b ⃗   c ⃗ ] = [ b ⃗   c ⃗   a ⃗ ] = [ c ⃗   a ⃗   b ⃗ ] [\vec{a} \space \vec{b} \space \vec{c}]=[\vec{b} \space \vec{c} \space \vec{a}]=[\vec{c} \space \vec{a} \space \vec{b}] [a  b  c ]=[b  c  a ]=[c  a  b ]

【例】设向量 a = { − 1 , 3 , 2 } , b = { 2 , − 3 , − 4 } , c = { − 3 , 12 , 6 } a=\{-1,3,2\}, b=\{2,-3,-4\}, c=\{-3,12,6\} a={1,3,2},b={2,3,4},c={3,12,6}, 试证向量 a , b , c a, b, c a,b,c 共面,

【解】 [ a ⃗   b ⃗   c ⃗ ] = ∣ − 1 3 2 2 − 3 − 4 − 3 12 6 ∣ = 0 [\vec{a}\space \vec{b}\space\vec{c}]= \left|\begin{array}{ccc} -1 & 3 & 2 \\ 2 & -3 & -4 \\ -3 & 12 & 6 \end{array}\right| = 0 [a  b  c ]= 1233312246 =0 所以三向量共面

【例】设有向量 a , b , c a, b, c a,b,c, 且 ( a × b ) ⋅ c = 2 (a \times b) \cdot c=2 (a×b)c=2, 求 [ ( a + b ) × ( b + c ) ] ⋅ ( c + a ) [(a+b) \times(b+c)] \cdot(c+a) [(a+b)×(b+c)](c+a) 的值.

【解】(自己和自己的叉乘为0)
原式 = [ a ⃗ × b ⃗ + a ⃗ × c ⃗ + b ⃗ × b ⃗ + b ⃗ × c ⃗ ] ⋅ ( c ⃗ + a ⃗ ) = ( a ⃗ × b ⃗ ) ⋅ c ⃗ + ( a ⃗ × c ⃗ ) ⋅ c ⃗ + ( b ⃗ × c ⃗ ) ⋅ c ⃗ + ( a ⃗ × b ⃗ ) ⋅ a ⃗ + ( a ⃗ × c ⃗ ) ⋅ a ⃗ + ( b ⃗ × c ⃗ ) ⋅ a ⃗ = 2 ( a ⃗ × b ⃗ ) ⋅ c ⃗ = 4 \begin{align*} 原式&= [\vec{a}×\vec{b} +\vec{a}× \vec{c} +\vec{b}× \vec{b} +\vec{b}× \vec{c}]\cdot (\vec{c}+\vec{a}) \\ &=(\vec{a}×\vec{b})\cdot\vec{c}+(\vec{a}× \vec{c})\cdot\vec{c}+(\vec{b}× \vec{c})\cdot\vec{c}+(\vec{a}× \vec{b})\cdot\vec{a}+(\vec{a}× \vec{c})\cdot\vec{a}+(\vec{b}× \vec{c})\cdot\vec{a} \\ &=2(\vec{a}×\vec{b})\cdot\vec{c} =4 \end{align*} 原式=[a ×b +a ×c +b ×b +b ×c ](c +a )=(a ×b )c +(a ×c )c +(b ×c )c +(a ×b )a +(a ×c )a +(b ×c )a =2(a ×b )c =4


在下面的空间几何题中,一旦题目变得抽象就要画图来找条件!!


2.平面

①点法式方程
  • 利用平面内两条线叉乘求出平面的法向量,从而应用点法式方程
  • 利用一切方法求出法向量,从而应用点法式方程

image-20220522113530579

【例】求过 A ( 1 , 1 , − 1 ) , B ( − 2 , − 2 , 2 ) A(1,1,-1),B(-2,-2,2) A(1,1,1),B(2,2,2) C ( 1 , − 1 , 2 ) C(1,-1,2) C(1,1,2) 三点的平面方程.

【解】 A B ⃗ = ( 3 , 3 , − 3 ) = 3 ( 1 , 1 − 3 ) \vec{AB} =(3,3,-3)=3(1,1-3) AB =(3,3,3)=3(1,13) A C ⃗ = ( 0 , 2 , − 3 ) \vec{AC} =(0,2,-3) AC =(0,2,3) n ⃗ = ∣ i j k 1 1 − 1 0 2 − 3 ∣ = ( − 1 , 3 , 2 ) \vec{n}=\left|\begin{array}{lll} i & j & k \\ 1 & 1 & -1 \\ 0 & 2 & -3 \end{array}\right|=(-1,3,2) n = i10j12k13 =(1,3,2)

​ 所以,方程为
1 ( x − 1 ) − 3 ( y − 1 ) − 2 ( z + 1 ) = 0 ⟹ x − 3 y − 2 z = 0 1(x-1)-3(y-1)-2(z+1)=0 \Longrightarrow x-3y-2z=0 1(x1)3(y1)2(z+1)=0x3y2z=0

②平面束方程
  • 利用平面束方程求出一个含参法向量,结合题目解出参数,从而求出平面

【例】求过直线 { x + 5 y + z = 0 5 y + 2 z − 4 = 0 \left\{\begin{array}{l}x+5 y+z=0 \\ 5 y+2 z-4=0\end{array}\right. {x+5y+z=05y+2z4=0 且与平面 x − 4 y − 8 z − 10 = 0 x-4 y-8 z-10=0 x4y8z10=0 π 4 \frac{\pi}{4} 4π 角的平面方程.

【解】
平面束方程: ( x + 5 y + z ) + λ ( 5 y + 2 z − 4 ) = 0 法向量: n ⃗ = ( 1 + 5 λ , 5 + 2 λ , 1 − 4 λ ) c o u θ = 2 2 ⟹ λ = − 1 , λ = 3 x + 20 y + 7 z − 12 = 0  or  x − z + 4 = 0 \text{平面束方程:}(x+5y+z)+\lambda(5y+2z-4)=0 \\ \text{法向量:}\vec{n}=(1+5\lambda,5+2\lambda,1-4\lambda)\\ cou\theta=\frac{\sqrt{2}}{2} \Longrightarrow \lambda=-1,\lambda=3 \\ x+20y+7z-12=0 \space \text{or} \space x-z+4=0 平面束方程:(x+5y+z)+λ(5y+2z4)=0法向量:n =(1+5λ,5+2λ,14λ)couθ=22 λ=1,λ=3x+20y+7z12=0 or xz+4=0

3.直线

①点向式方程
  • 不惜一切代价找线内的点,不惜一切代价找方向向量

【例】求过点 ( − 1 , 0 , 4 ) (-1,0,4) (1,0,4) 且平行于平面 3 x − 4 y + z − 10 = 0 3 x-4 y+z-10=0 3x4y+z10=0, 又与直线 x + 1 1 = y − 3 1 = z 2 \frac{x+1}{1}=\frac{y-3}{1}=\frac{z}{2} 1x+1=1y3=2z 相交的直线方程.

【解】(我写的时候感觉抽象的一批!!所以我决定画图~)

知平面的法向量 n ⃗ = ( 3 , − 4 , 1 ) \vec{n}=(3,-4,1) n =(3,4,1)

image-20220522115006899
x + 1 1 = y − 3 1 = z 2 = k ⇒ { x = k − 1 y = k + 3 z = 2 k 设 p ⃗ = ( k − 1 , k + 3 , 2 k ) \begin{array}{l} \frac{x+1}{1}=\frac{y-3}{1}=\frac{z}{2}=k\\ \Rightarrow\left\{\begin{array}{l} x=k-1 \\ y=k+3 \\ z=2 k \end{array}\right.\\ 设\vec{p}=(k-1, k+3,2 k) \end{array} 1x+1=1y3=2z=k x=k1y=k+3z=2kp =(k1,k+3,2k)

则方向向量  a ⃗ = ( k , k + 3 , 2 k − 4 ) 则方向向量与法向量相乘为0 a ⃗ ⋅ n ⃗ = 0 k = 16 x + 1 16 = y 19 = z − 4 28 \text{则方向向量 }\vec{a}=(k,k+3,2k-4)\\ \text{则方向向量与法向量相乘为0} \\ \vec{a}\cdot \vec{n}=0\\ k=16 \\ \frac{x+1}{16}=\frac{y}{19}=\frac{z-4}{28} 则方向向量 a =(k,k+3,2k4)则方向向量与法向量相乘为0a n =0k=1616x+1=19y=28z4

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值