高等数学 第十二章 级数

第十二章 级数

——made by njtech Melody

零、两个重要级数

  1. p p p 级数

    形如 ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty} \frac{1}{n^{p}} n=1np1 的级数称为 p p p 级数, 当 p = 1 p=1 p=1 时, 级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty} \frac{1}{n} n=1n1 称为调和级数.

  • p ⩽ 1 p \leqslant 1 p1 时, p p p 级数发散,特别地, 调和级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty} \frac{1}{n} n=1n1 发散;
  • p > 1 p>1 p>1 时, p p p 级数收敛.
  1. 几何级数

形如 ∑ n = 1 ∞ a q n ( a ≠ 0 ) \sum_{n=1}^{\infty} a q^{n}(a \neq 0) n=1aqn(a=0) 称为几何级数.

  • ∣ q ∣ ⩾ 1 |q| \geqslant 1 q1 时, 几何级数发散;
  • ∣ q ∣ < 1 |q|<1 q<1 时, 几何级数 收敛, 且其和为 S =  首项  1 −  公比  S=\frac{\text { 首项 }}{1-\text { 公比 }} S=1 公比  首项 .

一、正项级数

∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 为常数项级数, 若对所有的 n n n a n ⩾ 0 a_{n} \geqslant 0 an0, 称 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 为正项级数.

  • 收敛充分条件:(有上界)存在 M > 0 M>0 M>0, 使得 S n ⩽ M S_{n} \leqslant M SnM, 则 lim ⁡ n → ∞ S n \lim _{n \rightarrow \infty} S_{n} limnSn 存在, 此时正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 收敛.

审敛法:

∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_{n} n=1bn 为正项级数, 正项级数敛散判别法如下:

①比较审敛法
  • 基本形式
    • a n ⩽ b n a_{n} \leqslant b_{n} anbn ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_{n} n=1bn 收敛, 则 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 收敛.
    • a n ⩾ b n a_{n} \geqslant b_{n} anbn ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_{n} n=1bn 发散, 则 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 发散.
  • 极限形式
    • lim ⁡ n → ∞ a n b n = l ( 0 < l < + ∞ ) \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=l(0<l<+\infty) limnbnan=l(0<l<+), 则级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_{n} n=1bn 敛㪚性相同
    • lim ⁡ n → ∞ a n b n = 0 \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0 limnbnan=0, 且 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_{n} n=1bn 收敛, 则 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 收敛.
    • lim ⁡ n → ∞ a n b n = + ∞ \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=+\infty limnbnan=+, 且 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_{n} n=1bn 发散, 则 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 发散.

【例】判断级数 ∑ n = 1 ∞ sin ⁡ π 2 n \sum_{n=1}^{\infty} \sin \frac{\pi}{2^{n}} n=1sin2nπ 的敛散性

【解】因为当 x ⩾ 0 x \geqslant 0 x0 时, sin ⁡ x ⩽ x \sin x \leqslant x sinxx, 所以 0 ⩽ sin ⁡ π 2 n ⩽ π 2 n 0 \leqslant \sin \frac{\pi}{2^{n}} \leqslant \frac{\pi}{2^{n}} 0sin2nπ2nπ.

​ 又因为 ∑ n = 1 ∞ π 2 n \sum_{n=1}^{\infty} \frac{\pi}{2^{n}} n=12nπ 收敛, 所以由正项级数比较审敛法得级数 ∑ n = 1 ∞ sin ⁡ π 2 n \sum_{n=1}^{\infty} \sin \frac{\pi}{2^{n}} n=1sin2nπ 收敛.

【例】判断级数 ∑ n = 1 ∞ 1 n 1 + 1 n \sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}} n=1n1+n11 的敛散性.

【解】因为 lim ⁡ n → ∞ 1 n / 1 n 1 + 1 n = lim ⁡ n → ∞ n 1 n = 1 \lim _{n \rightarrow \infty} \frac{1}{n} / \frac{1}{n^{1+\frac{1}{n}}}=\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1 limnn1/n1+n11=limnnn1=1 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty} \frac{1}{n} n=1n1 发散,所以由比较审敛法的极限形式得级数 ∑ n = 1 ∞ 1 n 1 + 1 n \sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}} n=1n1+n11 发散.

②比值审敛法

lim ⁡ n → ∞ a n + 1 a n = ρ \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho limnanan+1=ρ, 则

  • ρ < 1 \rho<1 ρ<1 时,级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 收敛;
  • ρ > 1 \rho>1 ρ>1 时,级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 发散.
  • ρ = 1 \rho=1 ρ=1 时,该方法失效

【例】判断级数 ∑ n = 1 ∞ 2 n n ! n n \sum_{n=1}^{\infty} \frac{2^{n} n !}{n^{n}} n=1nn2nn! 的敛散性.

【解】因为 lim ⁡ n → ∞ 2 n + 1 ( n + 1 ) ! ( n + 1 ) n + 1 / 2 n n ! n n = 2 lim ⁡ n → ∞ 1 ( 1 + 1 n ) n = 2 e < 1 \lim _{n \rightarrow \infty} \frac{2^{n+1}(n+1) !}{(n+1)^{n+1}} / \frac{2^{n} n !}{n^{n}}=2 \lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{2}{\mathrm{e}}<1 limn(n+1)n+12n+1(n+1)!/nn2nn!=2limn(1+n1)n1=e2<1,

③根值审敛法

lim ⁡ n → ∞ a n n = ρ \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho limnnan =ρ, 则

  • ρ < 1 \rho<1 ρ<1 时, 级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 收敛;
  • ρ > 1 \rho>1 ρ>1 时, 级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_{n} n=1an 发散.
  • ρ = 1 \rho=1 ρ=1 时,该方法失效

【例】判断级数 ∑ n = 1 ∞ ( n n + 1 ) n 2 \sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}} n=1(n+1n)n2 的敛散性

【解】因为 lim ⁡ n → ∞ a n n = lim ⁡ n → ∞ ( n n + 1 ) n = lim ⁡ n → ∞ 1 ( 1 + 1 n ) n = 1 e < 1 \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{\mathrm{e}}<1 limnnan =limn(n+1n)n=limn(1+n1)n1=e1<1, 所以由根值审敛法得级数 ∑ n = 1 ∞ ( n n + 1 ) n 2 \sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}} n=1(n+1n)n2 收敛.

二、交错级数

定义:

 称  ∑ n = 1 ∞ ( − 1 ) n − 1 u n  或  ∑ n = 1 ∞ ( − 1 ) n u n  为交错级数, 其中  u n > 0 ( n = 1 , 2 , ⋯   ) \text { 称 } \sum_{n=1}^{\infty}(-1)^{n-1} u_{n} \text { 或 } \sum_{n=1}^{\infty}(-1)^{n} u_{n} \text { 为交错级数, 其中 } u_{n}>0(n=1,2, \cdots)   n=1(1)n1un  n=1(1)nun 为交错级数其中 un>0(n=1,2,)

莱布尼茨审敛法

设 ∑ n = 1 ∞ ( − 1 ) n − 1 u n 为交错级数 , 若 ( 1 ) u n > u n + 1 ; ( 2 ) lim ⁡ n → ∞ u n = 0 , 则级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n 收敛 , 且其和不超过 u 1 \begin{aligned} &设 \sum_{n=1}^{\infty}(-1)^{n-1} u_{n} 为交错级数, 若 \\&(1) u_{n}>u_{n+1};\\ &(2) \lim _{n \rightarrow \infty} u_{n}=0, \\&则级数 \sum_{n=1}^{\infty}(-1)^{n-1} u_{n} 收敛, 且其和不超过 u_{1} \end{aligned} n=1(1)n1un为交错级数,(1)un>un+1;(2)nlimun=0,则级数n=1(1)n1un收敛,且其和不超过u1

【例】 1 − 1 2 + 1 3 − 1 4 + ⋯ + ( − 1 ) n − 1 1 n + . . . 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+(-1)^{n-1} \frac{1}{n}+... 121+3141++(1)n1n1+...

【解】交错级数, 1 n > 1 n + 1 \frac{1}{n}>\frac{1}{n+1} n1>n+11 l i m n → ∞ 1 n = 0 lim_{n→\infty}\frac{1}{n}=0 limnn1=0 收敛

三、任意项级数

定义:
u 1 + u 2 + u 3 + u 4 + . . . . ( u n 正负不知道 ) u_1+u_2+u_3+u_4+....(u_n正负不知道) u1+u2+u3+u4+....(un正负不知道)

条件收敛和绝对收敛

若 ∑ n = 1 ∞ ∣ u n ∣ 收敛 , 则 ∑ n = 1 ∞ u n 收敛,称 ∑ n = 1 ∞ u n 绝对收敛 ; 若 ∑ n = 1 ∞ u n 收敛 , 而 ∑ n = 1 ∞ ∣ u n ∣ 发散 , 称 ∑ n = 1 ∞ u n 为条件收敛 \begin{aligned} &若 \sum_{n=1}^{\infty}\left|u_{n}\right| 收敛,则\sum_{n=1}^{\infty} u_{n}收敛,称 \sum_{n=1}^{\infty} u_{n} 绝对收敛;\\ &若 \sum_{n=1}^{\infty} u_{n} 收敛,而 \sum_{n=1}^{\infty}\left|u_{n}\right| 发散, 称 \sum_{n=1}^{\infty} u_{n} 为条件收敛 \end{aligned} n=1un收敛,n=1un收敛,称n=1un绝对收敛;n=1un收敛,n=1un发散,n=1un为条件收敛

审敛法:

∑ n = 1 + ∞ u n = u 1 + u 2 + u 3 + ⋯ ⋅ lim ⁡ n → + ∞ ∣ u n + 1 u n ∣ = l . l < 1 时, ∑ u n ( 绝对 ) 收敛 l > 1 时, ∑ u n 发散 l = 1 时,无法判断 \begin{aligned} \sum_{n=1}^{+\infty} u_{n}&=u_{1}+u_{2}+u_{3}+\cdots \cdot\\ &\lim _{n \rightarrow+\infty}\left|\frac{u_{n+1}}{u_{n}}\right|=l .\\ &l<1时,\sum u_n(绝对)收敛\\ &l>1时,\sum u_n发散\\ &l=1时,无法判断 \end{aligned} n=1+un=u1+u2+u3+n+lim unun+1 =l.l<1时,un(绝对)收敛l>1时,un发散l=1时,无法判断

常用套路

收敛

  • 绝对收敛: ∑ ∣ u n ∣ \sum |u_n| un收敛, ∑ u n \sum u_n un 收敛(正项级数定理)
  • 条件收敛: ∑ ∣ u n ∣ \sum |u_n| un发散, ∑ u n \sum u_n un 收敛(正项级数定理 or 莱布尼茨定理)

发散

  • ∑ u n \sum u_n un 发散→ ∑ ∣ u n ∣ \sum |u_n| un 发散(通项极限不→0,定义法)

【例】 ∑ ( − 1 ) n − 1 n 3 n − 1 \sum(-1)^{n-1} \frac{n}{3^{n-1}} (1)n13n1n

【解】
lim ⁡ n → ∞ ∣ u n + 1 u n ∣ = lim ⁡ n → ∞ n + 1 3 n n 3 n − 1 = lim ⁡ n → ∞ n + 1 n ⋅ 1 3 = 1 3  收敛 \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\frac{n+1}{3^{n}}}{\frac{n}{3^{n-1}}}=\lim _{n \rightarrow \infty} \frac{n+1}{n} \cdot \frac{1}{3}=\frac{1}{3} \text{ 收敛} nlim unun+1 =nlim3n1n3nn+1=nlimnn+131=31 收敛

四、幂级数

函数列:

u 1 ( x ) , u 2 ( x ) , ⋯ u n ( x ) u_{1}(x), u_{2}(x), \cdots u_{n}(x) u1(x),u2(x),un(x)

函数项无穷级数 x x x 在区间 I I I

u 1 ( x ) + u 2 ( x ) + ⋯ u n ( x ) u_{1}(x)+u_{2}(x)+\cdots u_{n}(x) u1(x)+u2(x)+un(x)

幂级数

∑ n = 0 ∞ a n x n  或  ∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + ⋯ + a n x n + ⋯ \sum_{n=0}^{\infty} a_{n} x^{n} \text { 或 } \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots n=0anxn  n=0an(xx0)n=a0+a1x+a2x2+a3x3++anxn+

收敛点与收敛域

若常数项级数 ∑ n = 1 ∞ u n ( x 0 ) \sum_{n=1}^{\infty} u_{n}\left(x_{0}\right) n=1un(x0) 收敛, 称 x = x 0 x=x_{0} x=x0 为函数项级数 ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty} u_{n}(x) n=1un(x) 的收敛点

所有收敛点组成的集合称为 ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty} u_{n}(x) n=1un(x) 的收敛域

若常数项级数 ∑ n = 1 ∞ u n ( x 0 ) \sum_{n=1}^{\infty} u_{n}\left(x_{0}\right) n=1un(x0) 发散, 称 x = x 0 x=x_{0} x=x0 为函数项级数 ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty} u_{n}(x) n=1un(x) 的发散点

所有发散点组成的集合称为 ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^{\infty} u_{n}(x) n=1un(x) 的发散域

和函数

在收敛域内 , 设 S ( x ) = lim ⁡ n → ∞ S n ( x ) , 称 S ( x ) 为函数项级数 ∑ n = 1 ∞ u n ( x ) 的和函数 . 在收敛域内, 设 S(x)=\lim _{n \rightarrow \infty} S_{n}(x), 称 S(x) 为函数项级数 \sum_{n=1}^{\infty} u_{n}(x) 的和函数. 在收敛域内,S(x)=nlimSn(x),S(x)为函数项级数n=1un(x)的和函数.

审敛法:阿贝尔定理

对幂级数 ∑ n = 0 ∞ a n x n , 当 x = x 0 ( ≠ 0 ) 时 , 级数 ∑ n = 0 ∞ a n x n 收敛 , 当 ∣ x ∣ < ∣ x 0 ∣ 时 , 幂级数 ∑ n = 0 ∞ a n x n 绝对收敛 ; 当 x = x 1 时 , 级数 ∑ n = 0 ∞ a n x n 发散 , 当 ∣ x ∣ > ∣ x 1 ∣ 时 , 幂级数发散 . 对幂级数 \sum_{n=0}^{\infty} a_{n} x^{n}, \\ 当 x=x_{0}(\neq 0) 时, 级数 \sum_{n=0}^{\infty} a_{n} x^{n} 收敛, 当 |x|<\left|x_{0}\right| 时, 幂级数 \sum_{n=0}^{\infty} a_{n} x^{n} 绝对收敛;\\ 当 x=x_{1} 时,级数 \sum_{n=0}^{\infty} a_{n} x^{n}发散, 当 |x|> \left|x_{1}\right| 时, 幂级数发散. 对幂级数n=0anxn,x=x0(=0),级数n=0anxn收敛,x<x0,幂级数n=0anxn绝对收敛;x=x1,级数n=0anxn发散,x>x1,幂级数发散.

推论:

  • x = 0 x=0 x=0 时,收敛
  • x ∈ ( − ∞ , + ∞ ) x\in (-\infty,+\infty) x(,+) ,收敛
  • ∣ x ∣ < R |x|<R x<R 绝对收敛, R , − R R,-R R,R 两个端点要专门讨论

求R
对幂级数 ∑ n = 0 ∞ a n x n , 设 lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ , R = 1 ρ 对幂级数 \sum_{n=0}^{\infty} a_{n} x^{n}, 设 \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho, \\R=\frac{1}{\rho} 对幂级数n=0anxn,nlim anan+1 =ρ,R=ρ1
【例】 x − x 2 2 + x 3 3 ⋯ + ( − 1 ) n − 1 x n n + ⋯ x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots x2x2+3x3+(1)n1nxn+

【解】
lim ⁡ n → ∞ ∣ 1 n + 1 1 n ∣ = 1 = ρ R = 1 ρ = 1. \lim _{n \rightarrow \infty}\left|\frac{\frac{1}{n+1}}{\frac{1}{n}}\right|=1=\rho \quad R=\frac{1}{\rho}=1 . nlim n1n+11 =1=ρR=ρ1=1.
①当 x = − 1 x=-1 x=1 时, − 1 − 1 2 − 1 3 − . . . -1-\frac{1}{2}-\frac{1}{3} -... 12131... 调和级数 发散

②当 x = − 1 x=-1 x=1 时, 1 − 1 2 + 1 3 − 1 4 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4} 121+3141 交错级数,收敛

收敛域: ( − 1 , 1 ] (-1,1] (1,1]

  • 缺项不适用阿贝尔定理

【例】 ∑ n = 0 + ∞ ( 2 n ) ! ( n ! ) 2 x 2 n \sum_{n=0}^{+\infty} \frac{(2 n) !}{(n !)^{2}} x^{2 n} n=0+(n!)2(2n)!x2n 的收敛半径

【解】
lim ⁡ n → + ∞ ( 2 ( n + 1 ) ) 1 ( ( n + 1 ) ! ) 2 x 2 n + 2 ( 2 n ) ! ( n ! ) 2 x 2 n = 4 ∣ x ∣ 2 < 1. ∣ x ∣ < 1 2 \lim _{n \rightarrow+\infty} \frac{\frac{(2(n+1))^{1}}{((n+1) !)^{2}} x^{2 n+2}}{\frac{(2 n) !}{(n !)^{2}} x^{2 n}}=4|x|^{2}<1 .|x|<\frac{1}{2} n+lim(n!)2(2n)!x2n((n+1)!)2(2(n+1))1x2n+2=4∣x2<1.∣x<21

  • 其他幂级数要化为一般幂级数

【例】 ∑ n = 1 ∞ ( x − 1 ) n 2 n ⋅ n \sum_{n=1}^{\infty} \frac{(x-1)^{n}}{2^{n} \cdot n} n=12nn(x1)n 的收敛域

【解】
∑ n = 1 ∞ t n 2 n ⋅ n ℓ n → ∞ ∣ a n + 1 a n ∣ = 1 2 = ρ . R = 1 ρ = 2 \sum_{n=1}^{\infty} \frac{t^{n}}{2^{n} \cdot n} \quad \ell_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2}=\rho . \quad R=\frac{1}{\rho}=2 n=12nntnn anan+1 =21=ρ.R=ρ1=2
①当 t = − 2 t=-2 t=2 时, ∑ ( − 2 ) n 2 n ⋅ 1 n = 2 ( − 1 ) n 1 n \sum \frac{(-2)^{n}}{2^{n}} \cdot \frac{1}{n}=2(-1)^{n} \frac{1}{n} 2n(2)nn1=2(1)nn1 交错级数,收敛

②当 t = 2 t=2 t=2 时, ∑ 1 n \sum \frac{1}{n} n1 调和级数,发散

收敛域: ( − 1 , 3 ] (-1,3] (1,3]

性质

设幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 的收敛半径为 R R R, 其和函数为 S ( x ) S(x) S(x), 则

定理 1 和函数 S ( x ) S(x) S(x) ( − R , R ) (-R, R) (R,R) 内连续.

定理 2 (逐项可导性) 当 x ∈ ( − R , R ) x \in(-R, R) x(R,R) 时,
( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 \left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime}=\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} (n=0anxn)=n=0(anxn)=n=1nanxn1
且幂级数 ∑ n = 1 ∞ n a n x n − 1 \sum_{n=1}^{\infty} n a_{n} x^{n-1} n=1nanxn1 的收敛半径也是 R R R.

定理 3 (逐项可积性) 当 x ∈ ( − R , R ) x \in(-R, R) x(R,R) 时,
∫ 0 x ( ∑ n = 0 ∞ a n x n ) d x = ∑ n = 0 ∞ ∫ 0 x a n x n   d x = ∑ n = 0 ∞ a n n + 1 x n + 1 \int_{0}^{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \mathrm{d} x=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} x^{n} \mathrm{~d} x=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} 0x(n=0anxn)dx=n=00xanxn dx=n=0n+1anxn+1
且幂级数 ∑ n = 0 ∞ a n n + 1 x n + 1 \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} n=0n+1anxn+1 的收敛半径也是 R R R.

  • 性质使用后要重新判断端点的收敛性

【例】 ∑ n = 1 ∞ n x n − 1 \sum_{n=1}^{\infty}n x^{n-1} n=1nxn1 的收敛域,和函数 S ( x ) S(x) S(x)

【解】
lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = lim ⁡ n → + ∞ ∣ n + 1 n ∣ = 1 = ρ . R = 1 ρ = 1 x = 1 ∑ n 发散 x = − 1 ∑ ( − 1 ) n − 1 n 发散 \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim_{n \rightarrow+\infty}\left|\frac{n+1}{n}\right|=1=\rho . \quad R=\frac{1}{\rho}=1 \quad \\x=1 \quad \sum n 发散\\x=-1 \sum(-1)^{n-1} n 发散 nlim anan+1 =n+lim nn+1 =1=ρ.R=ρ1=1x=1n发散x=1(1)n1n发散
收敛域: ( − 1 , 1 ) (-1,1) (1,1)

和函数: S ( x ) = ∑ n = 1 ∞ n x n − 1 S(x)=\sum _{n=1}^\infty nx^{n-1} S(x)=n=1nxn1

先两边积分
∫ 0 x S ( x ) d x = ∫ 0 x ∑ n = 1 ∞ n x n − 1 = ∑ n = 1 ∞ ∫ 0 x n x n − 1 d x = ∑ n = 1 ∞ x n = x 1 − x \int_{0}^{x} S(x) d x=\int_{0}^{x} \sum_{n=1}^{\infty} n x^{n-1}=\sum_{n=1}^{\infty} \int_{0}^{x} n x^{n-1} d x=\sum_{n=1}^{\infty} x^{n}=\frac{x}{1-x} 0xS(x)dx=0xn=1nxn1=n=10xnxn1dx=n=1xn=1xx
再边求导
s ( x ) = 1 ( 1 − x ) 2 x ∈ ( − 1 , 1 ) s(x)=\frac{1}{(1-x)^{2}} \quad x \in(-1,1) s(x)=(1x)21x(1,1)

和函数利用幂级数性质

n n n 在分母,x的幂配凑先求导后积分

n n n 在分子,x的幂配凑减一先积分后求导

③ 一切的前提是化了之后能凑成幂级数的求和
∑ x = 0 ∞ x n = 1 + x + x 2 + . . . = S n = 1 1 − q ( 公比 ) = 1 1 − x \sum _{x=0}^\infty x^n=1+x+x^2+...=Sn=\frac{1}{1-q(公比)}=\frac{1}{1-x} x=0xn=1+x+x2+...=Sn=1q(公比)1=1x1
n n n 在分子,一次求导

【例】 ∑ n = 1 ∞ x n n \sum_{n=1}^{\infty} \frac{x^{n}}{n} n=1nxn

【解】 原式 = S ( x ) 原式=S(x) 原式=S(x)
S ′ ( x ) = ∑ x n − 1 = 1 1 − x ∫ 0 x s ′ ( x ) d x = ∫ 0 x 1 1 − x d x = − ln ⁡ ( 1 − x ) S ( x ) − S ( 0 ) , S ( x ) = − ln ⁡ ( 1 − x ) \begin{aligned} &S^{\prime}(x)=\sum x^{n-1}=\frac{1}{1-x} \\ &\int_{0}^{x} s^{\prime}(x) d x=\int_{0}^{x} \frac{1}{1-x} d x=-\ln (1-x) \\ &S(x)-S(0) ,\quad S(x)=-\ln (1-x) \end{aligned} S(x)=xn1=1x10xs(x)dx=0x1x1dx=ln(1x)S(x)S(0)S(x)=ln(1x)

  • n n n 在分母,一次求导

【例】 ∑ ( − 1 ) n − 1 2 n − 1 x 2 n \sum \frac{(-1)^{n-1}}{2 n-1} x^{2 n} 2n1(1)n1x2n

【解】原式 = x [ − ( − 1 ) n − 1 2 n − 1 x 2 n − 1 ] = x\left[-\frac{(-1)^{n-1}}{2 n-1} x^{2 n-1}\right] =x[2n1(1)n1x2n1] ,设 S ( x ) = ∑ ( − 1 ) n − 1 2 n − 1 x 2 n − 1 S(x) =\sum \frac{(-1)^{n-1}}{2 n-1} x^{2 n-1} S(x)=2n1(1)n1x2n1
S ′ ( x ) = ∑ ( − 1 ) n − 1 x 2 n − 2 = ∑ ( − x 2 ) n − 1 = 1 1 + x 2 ∫ 0 x S ′ ( x ) d x = ∫ 0 x 1 1 + x 2 d x = arctan ⁡ x S ( x ) − ∫ ( 0 ) , S ( x ) = arctan ⁡ x \begin{aligned} S^{\prime}(x) &=\sum(-1)^{n-1} x^{2 n-2} \\ &=\sum\left(-x^{2}\right)^{n-1}=\frac{1}{1+x^{2}} \\ \int_{0}^{x} S^{\prime}(x) d x&=\int_{0}^{x} \frac{1}{1+x^{2}} d x=\arctan x \\ S(x)-\int(0) ,\quad S(x)&=\arctan x \end{aligned} S(x)0xS(x)dxS(x)(0),S(x)=(1)n1x2n2=(x2)n1=1+x21=0x1+x21dx=arctanx=arctanx

  • n n n 在分母,二次求导

【例】 ∑ 1 n ( n + 1 ) x n \sum \frac{1}{n(n+1)} x^{n} n(n+1)1xn

【解】原式 = S ( x ) =S(x) =S(x)
x S ( x ) = ∑ 1 n ( n + 1 ) x n + 1 ( x S ( x ) ) ′ = ∑ 1 n x n ( x S ( x ) ) ′ ′ = ∑ x n − 1 = 1 1 − x ( x S ( x ) ) ′ = ∫ 0 x 1 1 − x d x = − ln ⁡ ( 1 − x ) x ( x ) = x + ( 1 − x ) ln ⁡ ( 1 − x ) S ( x ) = { 1 + ( 1 x − 1 ) ln ⁡ ( 1 − x ) [ − 1 , 0 ) ∪ ( 0 , 1 ) 0 x = 0 1 x = 1 \begin{aligned} &x S(x)=\sum \frac{1}{n(n+1)} x^{n+1} \\ &(x S(x))^{\prime}=\sum \frac{1}{n} x^{n} \\ &(x S(x))^{\prime \prime}=\sum x^{n-1}=\frac{1}{1-x}\\ &(x S(x))^{\prime}=\int_{0}^{x} \frac{1}{1-x} d x=-\ln (1-x) \\ &x(x)=x+(1-x) \ln (1-x) \\ &S(x)= \begin{cases}{1+\left(\frac{1}{x}-1\right) \ln (1-x)} & {[-1,0) \cup(0,1)} \\ 0 & x=0 \\ 1 & x=1\end{cases} \end{aligned} xS(x)=n(n+1)1xn+1(xS(x))=n1xn(xS(x))′′=xn1=1x1(xS(x))=0x1x1dx=ln(1x)x(x)=x+(1x)ln(1x)S(x)= 1+(x11)ln(1x)01[1,0)(0,1)x=0x=1

函数展开成幂级数

所谓函数展开成幂级数,其实是求和函数的逆向工程
1 + x + x 2 + x 3 + ⋯ = 1 1 − x 1 1 − x = 1 + x + x 2 + x 3 + ⋯ 1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} \\ \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots 1+x+x2+x3+=1x11x1=1+x+x2+x3+

泰勒级数

a n = f ( n ) ( x 0 ) n ! f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n a_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n !} \quad f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !} \left(x-x_{0}\right)^{n} an=n!f(n)(x0)f(x)=n=0n!f(n)(x0)(xx0)n

  • 充要条件 lim ⁡ n → ∞ R n ( x ) = 0 \lim _{n \rightarrow \infty} R_{n}(x)=0 limnRn(x)=0
  • 一般间接求导或者直接求导
  • 麦克劳林展开式:在 x = 0 x=0 x=0 处展开

f ( x ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( 0 ) x n x ∈ ( − r , r ) f(x)=\sum_{n=0}^{\infty} \frac{1}{n !} f^{(n)}(0) x^{n} \quad x \in(-r, r) f(x)=n=0n!1f(n)(0)xnx(r,r)

【例】 e x e^x ex

【解】 f ( n ) ( x ) = e x f ( n ) ( 0 ) = 1 f^{(n)}(x)=e^{x} \quad f^{(n)}(0)=1 f(n)(x)=exf(n)(0)=1
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯ ( − ∞ < x < + ∞ ) e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots+\frac{x^{n}}{n !}+\cdots(-\infty<x<+\infty) ex=1+x+2!x2+3!x3++n!xn+(<x<+)
【例】 s i n x sinx sinx

【解】

f ′ ( x ) = cos ⁡ x f^{\prime}(x)=\cos x f(x)=cosx f ′ ′ ( x ) = − sin ⁡ x f^{\prime \prime}(x)=-\sin x f′′(x)=sinx f ′ ′ ′ ( x ) = − cos ⁡ x f^{\prime \prime \prime}(x)=-\cos x f′′′(x)=cosx f ( 4 ) ( x ) = sin ⁡ x f^{(4)}(x)=\sin x f(4)(x)=sinx
$f^{\prime}(0)=1 $ f ′ ( 0 ) = 0 f^{\prime}(0)=0 f(0)=0 f ′ ( 0 ) = − 1 f^{\prime}(0)=-1 f(0)=1 f ′ ( 0 ) = 0 f^{\prime}(0)=0 f(0)=0

sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯ ( − ∞ < x < + ∞ ) \sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\frac{x^{7}}{7 !}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}+\cdots(-\infty<x<+\infty) sinx=x3!x3+5!x57!x7++(1)n(2n+1)!x2n+1+(<x<+)

e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + ⋯ ( − ∞ < x < + ∞ ) sin ⁡ x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯ ( − ∞ < x < + ∞ ) 1 1 − x = 1 + x + x 2 + x 3 + ⋯ + x n + ⋯ ( − 1 < x < 1 ) 1 1 + x = 1 − x + x 2 − x 3 + ⋯ + ( − 1 ) n x n + ⋯ ( − 1 < x < 1 ) ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ + ( − 1 ) n − 1 n x n + ⋯ ( − 1 < x ≤ 1 ) cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯ ( − ∞ < x < + ∞ ) a x = 1 + x ln ⁡ a + x 2 ( l n a ) 2 2 ! + ⋯ + x n ( ln ⁡ a ) n n ! + ⋯ ( − ∞ < x + ∞ ) 1 1 + x 2 = 1 − x 2 + x 4 − x 6 + x 8 − ⋯ + ( − 1 ) n x 2 n + ⋯ ( − 1 < x < 1 ) arctan ⁡ x = x − x 3 3 + x 5 5 − x 7 7 + ⋯ + ( − 1 ) n x 2 n + 1 2 n + 1 + ⋯ ( − 1 ⩽ x ⩽ 1 ) \begin{aligned} &e^{x}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots+\frac{x^{n}}{n !}+\cdots(-\infty<x<+\infty)\\ &\sin x=x-\frac{x^{3}}{3 !}+\frac{x^{5}}{5 !}-\frac{x^{7}}{7 !}+\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}+\cdots(-\infty<x<+\infty) \\ &\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots(-1<x<1) \\ &\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots+(-1)^{n} x^{n}+\cdots(-1<x<1) \\ &\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n-1}}{n} x^{n}+\cdots(-1<x≤1) \\ &\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6 !}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n) !}+\cdots(-\infty<x<+\infty) \\ &a^{x}=1+x \ln a+\frac{x^2(lna)^2}{2 !}+\cdots+\frac{x^{n}(\ln a)^{n}}{n !}+\cdots(-\infty<x+\infty)\\ &\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots+(-1)^{n} x^{2 n}+\cdots(-1<x<1)\\ & \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7} +\cdots+(-1)^{n} \frac{x^{2 n+1}}{2 n+1}+\cdots (-1 \leqslant x \leqslant 1) \end{aligned} ex=1+x+2!x2+3!x3++n!xn+(<x<+)sinx=x3!x3+5!x57!x7++(1)n(2n+1)!x2n+1+(<x<+)1x1=1+x+x2+x3++xn+(1<x<1)1+x1=1x+x2x3++(1)nxn+(1<x<1)ln(1+x)=x2x2+3x34x4++n(1)n1xn+(1<x1)cosx=12!x2+4!x46!x6++(1)n(2n)!x2n+(<x<+)ax=1+xlna+2!x2(lna)2++n!xn(lna)n+(<x+)1+x21=1x2+x4x6+x8+(1)nx2n+(1<x<1)arctanx=x3x3+5x57x7++(1)n2n+1x2n+1+(1x1)

【例】 f ( x ) = ( 1 − x ) ln ⁡ ( 1 + x ) f(x)=(1-x) \ln (1+x) f(x)=(1x)ln(1+x) 展开成 x x x 的幂级数

【解】
ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ ( 1 − x ) ln ⁡ ( 1 + x ) = ( 1 − x ) ( x − x 2 2 + x 3 2 − x 4 4 + ⋯   ) = x + ( − 1 2 − 1 ) x 2 + ( 1 3 + 1 2 ) x 3 + ( − 1 4 − 1 3 ) x 4 + ⋯ = x + ∑ n = 2 ∞ ( − 1 ) n − 1 ( 2 n − 1 ) x n n ( n − 1 ) ( − 1 < x ≤ 1 ) \begin{aligned} &\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\ &(1-x) \ln (1+x)=(1-x)\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{2}-\frac{x^{4}}{4}+\cdots\right)\\ &=x+\left(-\frac{1}{2}-1\right) x^{2}+\left(\frac{1}{3}+\frac{1}{2}\right) x^{3}+\left(-\frac{1}{4}-\frac{1}{3}\right) x^{4}+\cdots\\&=x+\sum_{n=2}^{\infty}(-1)^{n-1} \frac{(2 n-1) x^{n}}{n(n-1)} \quad(-1<x \leq 1) \end{aligned} ln(1+x)=x2x2+3x34x4+(1x)ln(1+x)=(1x)(x2x2+2x34x4+)=x+(211)x2+(31+21)x3+(4131)x4+=x+n=2(1)n1n(n1)(2n1)xn(1<x1)

【例】$sinx $展开成 ( x − π 4 ) (x-\frac{\pi}{4}) (x4π) 的幂级数

【解】
sin ⁡ x = sin ⁡ ( π 4 + x − π 4 ) = sin ⁡ π 4 cos ⁡ ( x − π 4 ) + cos ⁡ π 4 sin ⁡ ( x − π 4 ) = 2 2 [ cos ⁡ ( x − π 4 ) + sin ⁡ ( x − π 4 ) ] \sin x=\sin \left(\frac{\pi}{4}+x-\frac{\pi}{4}\right)=\sin \frac{\pi}{4} \cos \left(x-\frac{\pi}{4}\right)+\cos \frac{\pi}{4} \sin \left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\left[\cos \left(x-\frac{\pi}{4}\right)+\sin \left(x-\frac{\pi}{4}\right)\right] sinx=sin(4π+x4π)=sin4πcos(x4π)+cos4πsin(x4π)=22 [cos(x4π)+sin(x4π)]

【例】 f ( x ) = 1 x 2 + 4 x + 3 f(x)=\frac{1}{x^{2}+4 x+3} f(x)=x2+4x+31 展开成 ( x − 1 ) (x-1) (x1) 的幂级数

【解】 f ( x ) = 1 ( x + 1 ) ( x + 3 ) = 1 2 ( 1 1 + x − 1 3 + x ) f(x)=\frac{1}{(x+1)(x+3)}=\frac{1}{2}\left(\frac{1}{1+x}-\frac{1}{3+x}\right) f(x)=(x+1)(x+3)1=21(1+x13+x1)
( 1 1 + x ) = 1 − x + x 2 − x 3 + x 4 ⋯ \left(\frac{1}{1+x}\right)=1-x+x^{2}-x^{3}+x^{4} \cdots (1+x1)=1x+x2x3+x4

1 1 + x = 1 2 + ( x − 1 ) = 1 2 1 1 + x − 1 2 = 1 2 ( 1 − x − 1 2 + ( x − 1 ) 2 2 2 − ( x − 1 ) 3 2 3 + ( x − 1 ) 4 2 4 ⋯ ⋯   ) ( − 1 < x < 3 ) 1 3 + x = 1 4 + ( x − 1 ) = 1 4 1 1 + ( x − 1 4 ) = 1 4 ( 1 − x − 1 4 + ( x − 1 ) 2 4 2 − ( x − 1 ) 3 4 3 + ( x − 1 ) 4 4 4 − . . . . ) ( − 3 < x < 5 ) \begin{aligned} &\frac{1}{1+x}=\frac{1}{2+(x-1)}=\frac{1}{2}\frac{1}{1+\frac{x-1}{2}}=\frac{1}{2}\left(1-\frac{x-1}{2}+\frac{(x-1)^{2}}{2^{2}}-\frac{(x-1)^{3}}{2^{3}}+\frac{(x-1)^{4}}{2^{4}} \cdots \cdots\right)(-1<x<3) \\ &\frac{1}{3+x}=\frac{1}{4+(x-1)}=\frac{1}{4} \frac{1}{1+\left(\frac{x-1}{4})\right.}=\frac{1}{4}\left(1-\frac{x-1}{4}+\frac{(x-1)^{2}}{4^{2}}-\frac{(x-1)^{3}}{4^{3}}+\frac{(x-1)^{4}}{4^{4}}- ....\right)(-3<x<5) \end{aligned} 1+x1=2+(x1)1=211+2x11=21(12x1+22(x1)223(x1)3+24(x1)4⋯⋯)(1<x<3)3+x1=4+(x1)1=411+(4x1)1=41(14x1+42(x1)243(x1)3+44(x1)4....)(3<x<5)

f ( x ) = ∑ n = 0 ∞ ( − 1 ) m ( 1 2 n + 2 − 1 2 2 n + 3 ) ( x − 1 ) n ( − 1 < x < 3 ) f(x)=\sum_{n=0}^{\infty}(-1)^{m}\left(\frac{1}{2^{n+2}}-\frac{1}{2^{2 n+3}}\right)(x-1)^{n}(-1<x<3) f(x)=n=0(1)m(2n+2122n+31)(x1)n(1<x<3)

五、傅里叶级数

周期为 2 π 2\pi 2π f ( x ) f(x) f(x)

  • 狄利克雷充分条件:设 f ( x ) f(x) f(x) 是以 2 π 2 \pi 2π 为周期的函数,若 f ( x ) f(x) f(x) [ − π , π ] [-\pi, \pi] [π,π] 上满足

(1) f ( x ) f(x) f(x) [ − π , π ] [-\pi, \pi] [π,π] 上连续或只有有限个第一类间断点

(2) f ( x ) f(x) f(x) [ − π , π ] [-\pi, \pi] [π,π] 上只有有限个极值点, 则 f ( x ) f(x) f(x) 可以展开成
a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) 2a0+n=1(ancosnx+bnsinnx)

a n = 1 π ∫ − π π f ( x ) cos ⁡ n x   d x ( n = 0 , 1 , 2 , ⋯   ) , b n = 1 π ∫ − π π f ( x ) sin ⁡ n x   d x ( n = 1 , 2 , ⋯   ) a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x(n=0,1,2, \cdots), b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x(n=1,2, \cdots) an=π1ππf(x)cosnx dx(n=0,1,2,),bn=π1ππf(x)sinnx dx(n=1,2,)

  • (1) 当 x x x f ( x ) f(x) f(x) 的连续点时,即为展开式
  • (2) 当 x x x f ( x ) f(x) f(x) 的间断点时,为 f ( x − 0 ) + f ( x + 0 ) 2 \frac{f(x-0)+f(x+0)}{2} 2f(x0)+f(x+0)

定义于 [ − π , π ] [-\pi, \pi] [π,π] f ( x ) f(x) f(x)

  • 进行周期延拓,重点判断间断点

定义于 [ 0 , π ] [0, \pi] [0,π] f ( x ) f(x) f(x)

看题目需要怎么展开

展开成余弦函数
  • 即一定偶对称,则 b n b_n bn 一定为0,只需要 a n a_n an

展开成正弦函数

  • 即一定奇对称,则 a n a_n an 一定为0,只需要 b n b_n bn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值