高等数学 第九章 多元函数微分学(上)

第九章 多元函数微分学

——made by njtech Melody

一、多元函数的概念

1. 平面点集和区域

略。。。

2. 多元函数的极限

​ 定义 :设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 的某一空心邻域内有定义, A A A 为常数. 如果对任给的正数 ε \varepsilon ε, 存在正数 δ \delta δ, 使得对于适合不等式
0 < ∣ P 0 P ∣ = ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ 0<\left|P_{0} P\right|=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta 0<P0P=(xx0)2+(yy0)2 <δ
的一切点 P ( x , y ) ∈ D P(x, y) \in D P(x,y)D, 恒有
∣ f ( x , y ) − A ∣ < ε |f(x, y)-A|<\varepsilon f(x,y)A<ε
成立, 则称 A A A 为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) x → x 0 , y → y 0 x \rightarrow x_{0}, y \rightarrow y_{0} xx0,yy0 (即 P → P 0 P \rightarrow P_{0} PP0 ) 时的极限, 记作 lim ⁡ x → x 0 y → y 0 f ( x , y ) = A \lim _{\substack{x \rightarrow x_{0} \\ y \rightarrow y_{0}}} f(x, y)=A limxx0yy0f(x,y)=A lim ⁡ P → P 0 f ( P ) = A \lim _{P \rightarrow P_{0}} f(P)=A limPP0f(P)=A f ( x , y ) → A ( ρ → 0 ) f(x, y) \rightarrow A(\rho \rightarrow 0) f(x,y)A(ρ0). 这里 ρ = ∣ P 0 P ∣ \rho=\left|P_{0} P\right| ρ=P0P.

  • 为了区别于一元函数的极限,也称二元函数的极限为二重极限.

3. 多元函数的连续性

定义 : 设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 的某个邻域内有定义, 如果
lim ⁡ x → x 0 y → y 0 f ( x , y ) = f ( x 0 , y 0 ) \lim _{\substack{x \rightarrow x_{0} \\ y \rightarrow y_{0}}} f(x, y)=f\left(x_{0}, y_{0}\right) xx0yy0limf(x,y)=f(x0,y0)
成立, 则称函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 P_{0} P0 处连续.

  • 和上学期学的类似,在一元函数里面,从正负两边逼近得到的极限值相等才连续

​ 在多元函数里面,从各个方向逼近得到的极限值相等才连续

  • 如果函数 f ( x , y ) f(x, y) f(x,y) P 0 P_{0} P0 处不连续,则称点 P 0 P_{0} P0 是函数 f ( x , y ) f(x, y) f(x,y) 的间断点
多元初等函数的连续性

定理: 分别以 x x x y y y 为自变量的基本初等函数与常数经过有限次四则运算及有限次复合运算并能用一个式子表示的函数, 称为以 x , y x, y x,y 为自变量的二元初等函数.

  • 日后证明连续性的重要定理

4. 有界闭区域上多元连续函数的性质

定理 1 (最大值和最小值定理) 若多元函数 f ( P ) f(P) f(P) 在有界闭区域 D D D 上连续, 则它在 D D D 上一定能取得最大值和最小值. 即存在点 P 1 , P 2 ∈ D P_{1}, P_{2} \in D P1,P2D, 使对任意的 P ∈ D P \in D PD 均有
f ( P 1 ) ⩽ f ( P ) ⩽ f ( P 2 ) . f\left(P_{1}\right) \leqslant f(P) \leqslant f\left(P_{2}\right) . f(P1)f(P)f(P2).
推论 若多元函数 f ( P ) f(P) f(P) 在有界闭区域 D D D 上连续, 则它在 D D D 上必有界.

定理 2 (介值定理) 若函数 f ( P ) f(P) f(P) 在有界闭区域 D D D 上连续, 且它在 D D D 上取得 两个不同的函数值, 则它一定能取得介于这两个函数值之间的一切值.
​ 特别地, f ( P ) f(P) f(P) 一定可取得介于函数最大值与最小值之间的任何值.

定理 3 (一致连续性定理) 在有界闭区域 D D D 上连续的多元函数 f ( P ) f(P) f(P), 必定 在 D D D 上一致连续, 即对任意 ε > 0 \varepsilon>0 ε>0, 存在 δ > 0 \delta>0 δ>0, 对任何 P 1 , P 2 ∈ D P_{1}, P_{2} \in D P1,P2D, 当 ∣ P 1 P 2 ∣ < δ \left|P_{1} P_{2}\right|<\delta P1P2<δ 时, 都有 ∣ f ( P 1 ) − f ( P 2 ) ∣ < ε \left|f\left(P_{1}\right)-f\left(P_{2}\right)\right|<\varepsilon f(P1)f(P2)<ε 成立.

  • 与上学期学的闭区间连续函数的性质相似,→高数上P64

二、偏导数

1. 偏导数的定义

设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 的某一邻域内有定义, 将 y y y 固定在 y 0 y_{0} y0, 给 x 0 x_{0} x0 以增量 Δ x \Delta x Δx, 于是函数有增量
Δ x z = f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) , \Delta_{x} z=f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right), Δxz=f(x0+Δx,y0)f(x0,y0),
Δ x z \Delta_{x} z Δxz 称为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) P 0 P_{0} P0 处对 x x x 的偏增量, 若极限
lim ⁡ Δ x → 0 Δ x z Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{\Delta_{x} z}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} Δx0limΔxΔxz=Δx0limΔxf(x0+Δx,y0)f(x0,y0)
存在, 则称此极限为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 P_{0} P0 处对 x x x 的偏导数, 并记作
∂ z ∂ x ∣ x = x 0 y = y 0 , ∂ f ∂ x ∣ x = x 0 y = y 0 , z x ( x 0 , y 0 )  或  f x ( x 0 , y 0 ) .  \left.\frac{\partial z}{\partial x}\right|_{\substack{x=x_{0} \\ y=y_{0}}},\left.\frac{\partial f}{\partial x}\right|_{\substack{x=x_{0} \\ y=y_{0}}}, z_{x}\left(x_{0}, y_{0}\right) \text { 或 } f_{x}\left(x_{0}, y_{0}\right) \text {. } xz x=x0y=y0,xf x=x0y=y0,zx(x0,y0)  fx(x0,y0)
类似地, 当自变量 x x x 固定在 x 0 x_{0} x0, 而 y y y y 0 y_{0} y0 处有增量 Δ y \Delta y Δy 时, 如果极限
lim ⁡ Δ y → 0 Δ y z Δ y = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim _{\Delta y \rightarrow 0} \frac{\Delta_{y} z}{\Delta y}=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y} Δy0limΔyΔyz=Δy0limΔyf(x0,y0+Δy)f(x0,y0)
存在, 则称此极限为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 P_{0} P0 处对 y y y 的偏导数, 并记作
∂ z ∂ y ∣ x = x 0 y = y 0 , ∂ f ∂ y ∣ x = x 0 y = y 0 , z y ( x 0 , y 0 )  或  f y ( x 0 , y 0 ) .  \left.\frac{\partial z}{\partial y}\right|_{\substack{x=x_{0} \\ y=y_{0}}},\left.\quad \frac{\partial f}{\partial y}\right|_{\substack{x=x_{0} \\ y=y_{0}}}, z_{y}\left(x_{0}, y_{0}\right) \text { 或 } f_{y}\left(x_{0}, y_{0}\right) \text {. } yz x=x0y=y0,yf x=x0y=y0,zy(x0,y0)  fy(x0,y0)

  • 计算偏导数的方法:对谁偏导,就把另外一个变量看做常量
  • 偏导数的几何意义

image-20220502141442258

由二元函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 几何意义及偏导数 f x f_{x} fx ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 的概念知, f x ( x 0 , y 0 ) f_{x}\left(x_{0}, y_{0}\right) fx(x0,y0) 表示空间曲线
Γ 1 : { z = f ( x , y ) , y = y 0 \Gamma_{1}:\left\{\begin{array}{l} z=f(x, y), \\ y=y_{0} \end{array}\right. Γ1:{z=f(x,y),y=y0
在点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) (其中 z 0 = f ( x 0 , y 0 ) z_{0}=f\left(x_{0}, y_{0}\right) z0=f(x0,y0) ) 处的切线 T x T_{x} Tx x x x 轴的斜率.
同理, f y ( x 0 , y 0 ) f_{y}\left(x_{0}, y_{0}\right) fy(x0,y0) 表示空间曲线
Γ 2 : { z = f ( x , y ) , x = x 0 \Gamma_{2}:\left\{\begin{array}{l} z=f(x, y), \\ x=x_{0} \end{array}\right. Γ2:{z=f(x,y),x=x0
在点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) (其中 z 0 = f ( x 0 , y 0 ) z_{0}=f\left(x_{0}, y_{0}\right) z0=f(x0,y0) ) 处的切线 T y T_{y} Ty y y y 轴的斜率.

2. 高阶导数的表示

∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = f x x ( x , y ) ; ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = f x y ( x , y ) ; ∂ 2 z ∂ y ∂ x = ∂ ∂ x ( ∂ z ∂ y ) = f y x ( x , y ) ; ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = f y y ( x , y ) \begin{aligned} &\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=f_{x x}(x, y) ; \quad \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=f_{x y}(x, y) ; \\ &\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=f_{y x}(x, y) ; \quad \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=f_{y y}(x, y) \end{aligned} x22z=x(xz)=fxx(x,y);xy2z=y(xz)=fxy(x,y);yx2z=x(yz)=fyx(x,y);y22z=y(yz)=fyy(x,y)

  • 注意第二个和第三个混合偏导数的偏导顺序

3.混合偏导数相等定理

定理 若函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 的两个二阶混合偏导数 f x y ( x , y ) , f y x ( x , y ) f_{x y}(x, y), f_{y x}(x, y) fxy(x,y),fyx(x,y) 在区域 D D D 内连续,则它们一定相等, 即 f x y ( x , y ) = f y x ( x , y ) f_{x y}(x, y)=f_{y x}(x, y) fxy(x,y)=fyx(x,y).

三、全微分

1. 定义

若函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处的全增量 Δ z \Delta z Δz 可表示为 Δ z = A Δ x + \Delta z=A \Delta x+ Δz=AΔx+ B Δ y + o ( ρ ) B \Delta y+o(\rho) BΔy+o(ρ), 其中 A , B A, B A,B 不依赖于 Δ x , Δ y \Delta x, \Delta y Δx,Δy,而仅与 x , y x, y x,y 有关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} ρ=(Δx)2+(Δy)2 , o ( ρ ) o(\rho) o(ρ) 是当 ρ → 0 \rho \rightarrow 0 ρ0 时, 比 ρ \rho ρ 高阶的无穷小量. 则称函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处可微, 并称 A Δ x + B Δ y A \Delta x+B \Delta y AΔx+BΔy 为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处的全微分, 记作 d z \mathrm{d} z dz, 即 d z ∣ ( x 0 , y 0 ) = A Δ x + B Δ y \mathrm{d} z|_{(x_0,y_0)}=A \Delta x+B \Delta y dz(x0,y0)=AΔx+BΔy.

  • A = f x ′ ( x 0 , y 0 ) , B = f y ′ ( x 0 , y 0 ) A=f_{x}^{\prime}\left(x_{0}, y_{0}\right), \quad B=f_{y}^{\prime}\left(x_{0}, y_{0}\right) A=fx(x0,y0),B=fy(x0,y0).
  • 函数 f ( x , y ) f(x, y) f(x,y) ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 处可微的充分必要条件 是 lim ⁡ ρ → 0 Δ z − A Δ x − B Δ y ρ = 0 \lim _{\rho \rightarrow 0} \frac{\Delta z-A \Delta x-B \Delta y}{\rho}=0 limρ0ρΔzAΔxBΔy=0.
  • z = f ( x , y ) z=f(x, y) z=f(x,y) 可微, 则其全微分为 d z = ∂ f ∂ x   d x + ∂ f ∂ y   d y \mathrm{d} z=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y dz=xf dx+yf dy.

四、连续、可偏导、可微的关系

定理 1(必要条件) 如果函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处可微, 则它在该点处必连续.

定理 2(必要条件) 如果函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处可微, 则函数在该点 P ( x , y ) P(x, y) P(x,y) 处的偏导数 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} xz,yz 都存在, 且函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处的全微分可 表示为
d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y \mathrm{d} z=\frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y dz=xzΔx+yzΔy
定理 3(充分条件) 若函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 的某个邻域内存在偏导 数 f x ( x , y ) , f y ( x , y ) f_{x}(x, y), f_{y}(x, y) fx(x,y),fy(x,y), 且这两个偏导数在点 P P P 处连续, 则函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在,点 P P P 处可微.

  • 一元函数和多元函数的对比:

image-20220504165939031

总结:可微必可偏导,可微必连续,但可微不代表偏导连续
可偏导且偏导连续必可微
连续必有极限

五、多元微分学的几何应用

*回顾知识

  • 曲面方程的形式:形如 F ( x , y , z ) = 0 F(x,y,z) =0 F(x,y,z)=0 的方程

  • 空间曲线的形式:①两个曲面的交线: { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \{\begin{array}{l}F(x,y,z)=0 \\ G(x,y,z)=0\end{array} {F(x,y,z)=0G(x,y,z)=0

    ​ ②表示成参数的t的函数: { x = x ( t ) y = y ( t ) z = z ( t ) \{\begin{array}{l}x=x(t) \\ y=y(t)\\z=z(t)\end{array} {x=x(t)y=y(t)z=z(t)

  • 空间平面的形式:点法式方程:过 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0) 且垂直于 n ⃗ = ( A , B , C ) \vec{n}=(A,B,C) n =(A,B,C) 的平面, A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0

  • 空间直线的形式:①一般式方程:视为两平面交线 L = { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 L=\{\begin{array}{l}A_1 x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0\end{array} L={A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

​ ②对称式方程:直线上一点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0) 和方向向量 s ⃗ = ( m , n , p ) \vec{s}=(m,n,p) s =(m,n,p) x − x 0 m = y − y 0 n = z 0 − z 0 p \frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z_{0}-z_{0}}{p} mxx0=nyy0=pz0z0

1. 二维空间的方向导数

z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 M 0 ( x 0 , y 0 ) M_{0}\left(x_{0}, y_{0}\right) M0(x0,y0) 的邻域内有定义, 过点 M 0 ( x 0 , y 0 ) M_{0}\left(x_{0}, y_{0}\right) M0(x0,y0) 作射线 l l l, 任取 M ( x 0 + Δ x , y 0 + Δ y ) ∈ l M\left(x_{0}+\Delta x, y_{0}+\Delta y\right) \in l M(x0+Δx,y0+Δy)l, 令 ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} ρ=(Δx)2+(Δy)2 .

lim ⁡ ρ → 0 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) ρ \lim _{\rho \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\rho} limρ0ρf(x0+Δx,y0+Δy)f(x0,y0) 存在, 称此极限为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 M 0 ( x 0 , y 0 ) M_{0}\left(x_{0}, y_{0}\right) M0(x0,y0) 处沿射线 l l l 的方向导数,记为 ∂ f ∂ l ∣ M 0 \left.\frac{\partial f}{\partial l}\right|_{M_{0}} lf M0.

计算公式: ∂ f ∂ l ∣ M 0 = ∂ f ∂ x ∣ M 0 cos ⁡ α + ∂ f ∂ y ∣ M 0 cos ⁡ β \left.\frac{\partial f}{\partial l}\right|_{M_{0}}=\left.\frac{\partial f}{\partial x}\right|_{M_{0}} \cos \alpha+\left.\frac{\partial f}{\partial y}\right|_{M_{0}} \cos \beta lf M0=xf M0cosα+yf M0cosβ, 其中 cos ⁡ α , cos ⁡ β \cos \alpha, \cos \beta cosα,cosβ 为射线 l l l 的方向余弦.

射线 v = v 1 i ⃗ + v 2 j ⃗ + v 3 k ⃗ cos ⁡ a = v 1 v 1 2 + v 2 2 + v 3 2 cos ⁡ b = v 2 v 1 2 + v 2 2 + v 3 2 cos ⁡ c = v 3 v 1 2 + v 2 2 + v 3 2 \begin{aligned} &射线v=v_1\vec{i}+v_2\vec{j}+v_3\vec{k}\\ &\cos a=\frac{v_{1}}{\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}} \\ &\cos b=\frac{v_{2}}{\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}} \\ &\cos c=\frac{v_{3}}{\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}} \end{aligned} 射线v=v1i +v2j +v3k cosa=v12+v22+v32 v1cosb=v12+v22+v32 v2cosc=v12+v22+v32 v3

2. 三维空间的方向导数

u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 在点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) 的邻域内有定义, 过 点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) 作射线 l l l, 任取 M ( x 0 + Δ x , y 0 + Δ y , z 0 + Δ z ) ∈ l M\left(x_{0}+\Delta x, y_{0}+\Delta y, z_{0}+\Delta z\right) \in l M(x0+Δx,y0+Δy,z0+Δz)l, 令
ρ = ( Δ x ) 2 + ( Δ y ) 2 + ( Δ z ) 2 . \rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}} . ρ=(Δx)2+(Δy)2+(Δz)2 .
lim ⁡ ρ → 0 f ( x 0 + Δ x , y 0 + Δ y , z 0 + Δ z ) − f ( x 0 , y 0 , z 0 ) ρ \lim _{\rho \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}+\Delta y, z_{0}+\Delta z\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{\rho} limρ0ρf(x0+Δx,y0+Δy,z0+Δz)f(x0,y0,z0) 存在, 称此极限为函数 u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 在点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) 处沿射线 l l l 的方向导数, 记为 ∂ u ∂ l ∣ M 0 \left.\frac{\partial u}{\partial l}\right|_{M_{0}} lu M0.
计算公式: ∂ u ∂ l ∣ M 0 = ∂ f ∂ x ∣ M 0 cos ⁡ α + ∂ f ∂ y ∣ M 0 cos ⁡ β + ∂ f ∂ z ∣ M 0 cos ⁡ γ \left.\frac{\partial u}{\partial l}\right|_{M_{0}}=\left.\frac{\partial f}{\partial x}\right|_{M_{0}} \cos \alpha+\left.\frac{\partial f}{\partial y}\right|_{M_{0}} \cos \beta+\left.\frac{\partial f}{\partial z}\right|_{M_{0}} \cos \gamma lu M0=xf M0cosα+yf M0cosβ+zf M0cosγ, 其中 cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha, \cos \beta, \cos \gamma cosα,cosβ,cosγ 为射线 l l l 的方向余弦.

  • 理解:方向导数是一个数。对 x x x 偏导或者对 $ y$ 偏导只能表示两个方向的斜率变化情况,而方向导数可以表示每个方向的斜率情况,换句话说,对 x x x 偏导或者对 $ y$ 偏导是方向导数的一种特例,可偏导则一定存在方向导数,存在方向导数则不一定可偏导.

3. 梯度

三元函数 u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 在点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) 处沿射线 l l l 的方向导数为

∂ u ∂ l ∣ M 0 = ∂ f ∂ x ∣ M 0 cos ⁡ α + ∂ f ∂ y ∣ M 0 cos ⁡ β + ∂ f ∂ z ∣ M 0 cos ⁡ γ = { ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ∣ M 0 ⋅ { cos ⁡ α , cos ⁡ β , cos ⁡ γ } . \left.\frac{\partial u}{\partial l}\right|_{M_{0}}=\left.\frac{\partial f}{\partial x}\right|_{M_{0}} \cos \alpha+\left.\frac{\partial f}{\partial y}\right|_{M_{0}} \cos \beta+\left.\frac{\partial f}{\partial z}\right|_{M_{0}} \cos \gamma=\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},\left.\frac{\partial f}{\partial z}\right|_{M_{0}} \cdot\{\cos \alpha, \cos \beta, \cos \gamma\} .\right. lu M0=xf M0cosα+yf M0cosβ+zf M0cosγ={xf,yf,zf M0{cosα,cosβ,cosγ}. 其中 cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha, \cos \beta, \cos \gamma cosα,cosβ,cosγ l l l 的方向余弦.

{ ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z } M 0 = grad ⁡ u ∣ M 0 \left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\}_{M_{0}}=\left.\operatorname{grad} u\right|_{M_{0}} {xf,yf,zf}M0=graduM0, 而 { cos ⁡ α , cos ⁡ β , cos ⁡ γ } = e \{\cos \alpha, \cos \beta, \cos \gamma\}=e {cosα,cosβ,cosγ}=e 为射线 l l l 对应的单位向量, 其模为 1 , 方向与 l l l 相同.

grad ⁡ u ∣ M 0 \left.\operatorname{grad} u\right|_{M_{0}} graduM0 e e e 的夹角为 θ \theta θ, 则

∂ u ∂ l ∣ M 0 = grad ⁡ u ∣ M 0 ⋅ e = ∣ grad ⁡ u ∣ M 0 ∣ ⋅ ∣ e ∣ cos ⁡ θ = ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 + ( ∂ f ∂ z ) 2 ∣ M 0 cos ⁡ θ \left.\frac{\partial u}{\partial l}\right|_{M_{0}}=\left.\operatorname{grad} u\right|_{M_{0}} \cdot e=|\operatorname{grad} u|_{M_{0}}|\cdot| e\left|\cos \theta=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+\left(\frac{\partial f}{\partial z}\right)^{2}}\right|_{M_{0}} \cos \theta lu M0=graduM0e=graduM0e cosθ=(xf)2+(yf)2+(zf)2 M0cosθ, 当 且仅当 θ = 0 \theta=0 θ=0 时, ∂ u ∂ l ∣ M 0 \left.\frac{\partial u}{\partial l}\right|_{M_{0}} lu M0 取最大值, 此时 grad ⁡ u ∣ M 0 \left.\operatorname{grad} u\right|_{M_{0}} graduM0 e e e 方向相同, 称 grad ⁡ u ∣ M 0 = { ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z } M 0 \left.\operatorname{grad} u\right|_{M_{0}}=\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\}_{M_{0}} graduM0={xf,yf,zf}M0 为函数 u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 在点 M 0 M_{0} M0 处的梯度, 即梯度的方向即为方向导数取最大值的方向或函数增长速度最快的方向.

一般地, grad ⁡ u = { ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z } \operatorname{grad} u=\left\{\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\} gradu={xf,yf,zf}.

  • 理解:梯度是向量,指向函数增长最快的方向,梯度的模是对应的方向导数

4. 空间曲面的切平面与法线

①空间曲面的切平面与法线

Σ : F ( x , y , z ) = 0 \Sigma: F(x, y, z)=0 Σ:F(x,y,z)=0 为空间曲面, M 0 ( x 0 , y 0 , z 0 ) ∈ Σ M_{0}\left(x_{0}, y_{0}, z_{0}\right) \in \Sigma M0(x0,y0,z0)Σ, 则曲面 Σ \Sigma Σ 在点 M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) 处 的法向量为
n = { F x ′ ( M 0 ) , F y ′ ( M 0 ) , F z ′ ( M 0 ) } , \boldsymbol{n}=\left\{F_{x}^{\prime}\left(M_{0}\right), F_{y}^{\prime}\left(M_{0}\right), F_{z}^{\prime}\left(M_{0}\right)\right\}, n={Fx(M0),Fy(M0),Fz(M0)},
三元函数的法向量就是梯度

M 0 ( x 0 , y 0 , z 0 ) M_{0}\left(x_{0}, y_{0}, z_{0}\right) M0(x0,y0,z0) 的曲面 Σ \Sigma Σ 的切平面为
F x ′ ( M 0 ) ( x − x 0 ) + F y ′ ( M 0 ) ( y − y 0 ) + F z ′ ( M 0 ) ( z − z 0 ) = 0 , F_{x}^{\prime}\left(M_{0}\right)\left(x-x_{0}\right)+F_{y}^{\prime}\left(M_{0}\right)\left(y-y_{0}\right)+F_{z}^{\prime}\left(M_{0}\right)\left(z-z_{0}\right)=0, Fx(M0)(xx0)+Fy(M0)(yy0)+Fz(M0)(zz0)=0,
法线为
x − x 0 F x ′ ( M 0 ) = y − y 0 F y ′ ( M 0 ) = z − z 0 F z ′ ( M 0 ) . \frac{x-x_{0}}{F_{x}^{\prime}\left(M_{0}\right)}=\frac{y-y_{0}}{F_{y}^{\prime}\left(M_{0}\right)}=\frac{z-z_{0}}{F_{z}^{\prime}\left(M_{0}\right)} . Fx(M0)xx0=Fy(M0)yy0=Fz(M0)zz0.

image-20220504215741795

②空间曲线的切线与法平面

曲线 L : { x = φ ( t ) , y = ψ ( t ) , 取参数  t = t 0 , 对应的曲线上的点为  M 0 ( x 0 , y 0 , z 0 ) ∈ L , 其中  x 0 = z = ω ( t ) , L:\left\{\begin{array}{l}x=\varphi(t), \\ y=\psi(t) \text {, 取参数 } t=t_{0} \text {, 对应的曲线上的点为 } M_{0}\left(x_{0}, y_{0}, z_{0}\right) \in L \text {, 其中 } x_{0}= \\ z=\omega(t),\end{array}\right. L: x=φ(t),y=ψ(t)取参数 t=t0对应的曲线上的点为 M0(x0,y0,z0)L其中 x0=z=ω(t), φ ( t 0 ) , y 0 = ψ ( t 0 ) , z 0 = ω ( t 0 ) \varphi\left(t_{0}\right), y_{0}=\psi\left(t_{0}\right), z_{0}=\omega\left(t_{0}\right) φ(t0),y0=ψ(t0),z0=ω(t0).

曲线 L L L 在点 M 0 M_{0} M0 处的切向量为 T = { φ ′ ( t 0 ) , ψ ′ ( t 0 ) , ω ′ ( t 0 ) } \boldsymbol{T}=\left\{\varphi^{\prime}\left(t_{0}\right), \psi^{\prime}\left(t_{0}\right), \omega^{\prime}\left(t_{0}\right)\right\} T={φ(t0),ψ(t0),ω(t0)};

曲线 L L L 在点 M 0 M_{0} M0 处的切线为 x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) \frac{x-x_{0}}{\varphi^{\prime}\left(t_{0}\right)}=\frac{y-y_{0}}{\psi^{\prime}\left(t_{0}\right)}=\frac{z-z_{0}}{\omega^{\prime}\left(t_{0}\right)} φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0;

曲线 L L L 在点 M 0 M_{0} M0 处的法平面方程为
φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0. \varphi^{\prime}\left(t_{0}\right)\left(x-x_{0}\right)+\psi^{\prime}\left(t_{0}\right)\left(y-y_{0}\right)+\omega^{\prime}\left(t_{0}\right)\left(z-z_{0}\right)=0 . φ(t0)(xx0)+ψ(t0)(yy0)+ω(t0)(zz0)=0.

  1. Γ : { F ( x , y , z ) = 0 , G ( x , y , z ) = 0 , M 0 ( x 0 , y 0 , z 0 ) ∈ Γ \Gamma:\left\{\begin{array}{l}F(x, y, z)=0, \\ G(x, y, z)=0,\end{array} M_{0}\left(x_{0}, y_{0}, z_{0}\right) \in \Gamma\right. Γ:{F(x,y,z)=0,G(x,y,z)=0,M0(x0,y0,z0)Γ, 则切线的方向向量为

T = ( { F x ′ , F y ′ , F z ′ } × { G x ′ , G y ′ , G z ′ } ) ∣ M 0 . \boldsymbol{T}=\left.\left(\left\{F_{x}^{\prime}, F_{y}^{\prime}, F_{z}^{\prime}\right\} \times\left\{G_{x}^{\prime}, G_{y}^{\prime}, G_{z}^{\prime}\right\}\right)\right|_{M_{0}} . T=({Fx,Fy,Fz}×{Gx,Gy,Gz}) M0.

image-20220504215403369

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值