高等数学 第十一章 曲线积分与曲面积分(下)

第十一章 曲线积分与曲面积分

——made by njtech Melody


曲线积分 {  对弧长的曲线积分   对坐标的曲线积分  \left\{\begin{array}{l}\text { 对弧长的曲线积分 } \\ \text { 对坐标的曲线积分 }\end{array}\right. { 对弧长的曲线积分  对坐标的曲线积分  曲面积分 {  对面积的曲面积分   对坐标的曲面积分  \left\{\begin{array}{l}\text { 对面积的曲面积分 } \\ \text { 对坐标的曲面积分 }\end{array}\right. { 对面积的曲面积分  对坐标的曲面积分 

三、对面积的曲面积分

1.定义

Σ \Sigma Σ 为空间有限曲面,函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在曲面 Σ \Sigma Σ 上有界, 将 Σ \Sigma Σ 划分为 n n n 个小曲面 Δ S 1 \Delta S_{1} ΔS1, Δ S 2 , ⋯   , Δ S n \Delta S_{2}, \cdots, \Delta S_{n} ΔS2,,ΔSn, 任取 ( ξ i , η i , ζ i ) ∈ Δ S i ( 1 ⩽ i ⩽ n ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \in \Delta S_{i}(1 \leqslant i \leqslant n) (ξi,ηi,ζi)ΔSi(1in), 作 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} i=1nf(ξi,ηi,ζi)ΔSi, 令 λ = max ⁡ 1 ⩽ i ⩽ n { d i } \lambda=\max _{1 \leqslant i \leqslant n}\left\{d_{i}\right\} λ=max1in{di}, 其 中 d i d_{i} di Δ S i \Delta S_{i} ΔSi 的直径, 若 lim ⁡ i → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \lim _{i \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} limi0i=1nf(ξi,ηi,ζi)ΔSi 存在, 称此极限为函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 在曲面 Σ \Sigma Σ 上 对面积的曲面积分, 记为 ∬ Σ f ( x , y , z ) d S \iint_{\Sigma} f(x, y, z) \mathrm{d} S Σf(x,y,z)dS, 即

∬ Σ f ( x , y , z ) d S = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \iint_{\Sigma} f(x, y, z) \mathrm{d} S=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} Σf(x,y,z)dS=λ0limi=1nf(ξi,ηi,ζi)ΔSi

2.物理意义

1.设 Σ \Sigma Σ 为空间有限光滑或逐片光滑的曲面, 其面密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z), 求曲面的 Σ \Sigma Σ 的质量 m m m
第一步, 将 Σ \Sigma Σ 划分为 n n n 个小曲面 Δ S 1 , Δ S 2 , ⋯   , Δ S n \Delta S_{1}, \Delta S_{2}, \cdots, \Delta S_{n} ΔS1,ΔS2,,ΔSn

第二步, 任取 ( ξ i , η i , ζ i ) ∈ Δ S i ( 1 ⩽ i ⩽ n ) \left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \in \Delta S_{i}(1 \leqslant i \leqslant n) (ξi,ηi,ζi)ΔSi(1in), 则 m ≈ ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ S i m \approx \sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} mi=1nρ(ξi,ηi,ζi)ΔSi

第三步,设 λ = max ⁡ 1 ⩽ i ⩽ n { d i } \lambda=\max _{1 \leqslant i \leqslant n}\left\{d_{i}\right\} λ=max1in{di}, 其中 d i d_{i} di Δ s i \Delta s_{i} Δsi 的直径 ( 1 ⩽ i ⩽ n ) (1 \leqslant i \leqslant n) (1in), 则
m = lim ⁡ λ → 0 ∑ i = 1 n ρ ( ξ i , η i , ζ i ) Δ S i m=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i} m=λ0limi=1nρ(ξi,ηi,ζi)ΔSi

3.基本性质

  1. 对面积的曲面积分的基本性质
  • 积分函数可加性

∬ Σ [ a f ( x , y , z ) + b g ( x , y , z ) ] d S = a ∬ Σ f ( x , y , z ) d S + b ∬ Σ g ( x , y , z ) d S \iint_{\Sigma}[a f(x, y, z)+b g(x, y, z)] \mathrm{d} S=a \iint_{\Sigma} f(x, y, z) \mathrm{d} S+b \iint_{\Sigma} g(x, y, z) \mathrm{d} S Σ[af(x,y,z)+bg(x,y,z)]dS=aΣf(x,y,z)dS+bΣg(x,y,z)dS

  • 积分限可加性
    ∬ Σ Σ f ( x , y , z ) d S = ∬ Σ 1 f ( x , y , z ) d S + ∬ Σ 2 f ( x , y , z ) d S , 其中 Σ = Σ 1 + Σ 2 . \iint_{\Sigma}^{\Sigma} f(x, y, z) \mathrm{d} S=\iint_{\Sigma_{1}} f(x, y, z) \mathrm{d} S+\iint_{\Sigma_{2}} f(x, y, z) \mathrm{d} S, 其中 \Sigma=\Sigma_{1}+\Sigma_{2}. ΣΣf(x,y,z)dS=Σ1f(x,y,z)dS+Σ2f(x,y,z)dS,其中Σ=Σ1+Σ2.

  • 对称性,奇偶性

设 Σ 关于 x O y 平面 ( 或变量 z ) 对称 , Σ 1 为 Σ 位于 x O y 平面上方的部分 , 若 f ( x , y , − z ) = − f ( x , y , z ) , 则 ∬ Σ f ( x , y , z ) d S = 0 若 f ( x , y , − z ) = f ( x , y , z ) , 则 ∬ Σ f ( x , y , z ) d S = 2 ∬ Σ 1 f ( x , y , z ) d S 设 Σ 关于 y O z 平面 ( 或变量 x ) 对称 , Σ 1 为 Σ 位于 y O z 平面前侧的部分 , 若 f ( − x , y , z ) = − f ( x , y , z ) , 则 ∬ Σ f ( x , y , z ) d S = 0 ; 若 f ( − x , y , z ) = f ( x , y , z ) , 则 ∬ Σ f ( x , y , z ) d S = 2 ∬ Σ 1 f ( x , y , z ) d S . 设 Σ 关于 x O z 平面 ( 或变量 y ) 对称 , Σ 1 为 Σ 位于 x O z 平面右侧的部分 , 若 f ( x , − y , z ) = − f ( x , y , z ) , 则 ∬ Σ f ( x , y , z ) d S = 0 ; 若 f ( x , − y , z ) = f ( x , y , z ) , 则 ∬ Σ f ( x , y , z ) d S = 2 ∬ Σ 1 f ( x , y , z ) d S . 设 \Sigma 关于 x O y 平面 (或变量 z ) 对称, \Sigma_{1} 为 \Sigma 位于 x O y 平面上方的部分,\\ 若 f(x, y,-z)=-f(x, y, z), 则 \iint_{\Sigma} f(x, y, z) \mathrm{d} S=0 \\ 若 f(x, y,-z)=f(x, y, z), 则 \iint_{\Sigma} f(x, y, z) \mathrm{d} S=2 \iint_{\Sigma_{1}} f(x, y, z) \mathrm{d} S\\ 设 \Sigma 关于 y O z 平面 (或变量 x ) 对称, \Sigma_{1} 为 \Sigma 位于 y O z 平面前侧的部分,\\ 若 f(-x, y, z)=-f(x, y, z), 则 \iint_{\Sigma} f(x, y, z) \mathrm{d} S=0;\\ 若 f(-x, y, z)=f(x, y, z), 则 \iint_{\Sigma} f(x, y, z) \mathrm{d} S=2 \iint_{\Sigma_{1}} f(x, y, z) \mathrm{d} S.\\ 设 \Sigma 关于 x O z 平面 (或变量 y ) 对称, \Sigma_{1} 为 \Sigma 位于 x O z 平面右侧的部分,\\ 若 f(x,-y, z)=-f(x, y, z), 则 \iint_{\Sigma} f(x, y, z) \mathrm{d} S=0;\\ 若 f(x,-y, z)=f(x, y, z), 则 \iint_{\Sigma} f(x, y, z) \mathrm{d} S=2 \iint_{\Sigma_{1}} f(x, y, z) \mathrm{d} S. Σ关于xOy平面(或变量z)对称,Σ1Σ位于xOy平面上方的部分,f(x,y,z)=f(x,y,z),Σf(x,y,z)dS=0f(x,y,z)=f(x,y,z),Σf(x,y,z)dS=2Σ1f(x,y,z)dSΣ关于yOz平面(或变量x)对称,Σ1Σ位于yOz平面前侧的部分,f(x,y,z)=f(x,y,z),Σf(x,y,z)dS=0;f(x,y,z)=f(x,y,z),Σf(x,y,z)dS=2Σ1f(x,y,z)dS.Σ关于xOz平面(或变量y)对称,Σ1Σ位于xOz平面右侧的部分,f(x,y,z)=f(x,y,z),Σf(x,y,z)dS=0;f(x,y,z)=f(x,y,z),Σf(x,y,z)dS=2Σ1f(x,y,z)dS.

  • (3) ∬ Σ d S = A \iint_{\Sigma} \mathrm{d} S=A ΣdS=A, 其中 A A A 为曲面 Σ \Sigma Σ 的面积.

4.计算方法

①特殊代替法+奇偶性判断法

【例】计算 I = ∬ Σ ( 2 x + 4 y 3 + z ) d S I=\iint_{\Sigma}\left(2 x+\frac{4 y}{3}+z\right) \mathrm{d} S I=Σ(2x+34y+z)dS, 其中 Σ \Sigma Σ 是平面 x 2 + y 3 + z 4 = 1 \frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1 2x+3y+4z=1 在第一卦限的部分.

【解】 I = ∬ Σ ( 2 x + 4 y 3 + z ) d S = 4 ∬ Σ ( x 2 + y 3 + z 4 ) d S = 4 ∬ Σ d S = 4   A I=\iint_{\Sigma}\left(2 x+\frac{4 y}{3}+z\right) \mathrm{d} S=4 \iint_{\Sigma}\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right) \mathrm{d} S=4 \iint_{\Sigma} \mathrm{d} S=4 \mathrm{~A} I=Σ(2x+34y+z)dS=4Σ(2x+3y+4z)dS=4ΣdS=4 A, 令 A ( 2 , 0 , 0 ) , B ( 0 , 3 , 0 ) , C ( 0 , 0 , 4 ) , A B → = { − 2 , 3 , 0 } , A C → = { − 2 , 0 , 4 } A(2,0,0), B(0,3,0), C(0,0,4), \overrightarrow{A B}=\{-2,3,0\}, \overrightarrow{A C}=\{-2,0,4\} A(2,0,0),B(0,3,0),C(0,0,4),AB ={2,3,0},AC ={2,0,4}, A B → × A C → = { 12 , 8 , 6 } \overrightarrow{A B} \times \overrightarrow{A C}=\{12,8,6\} AB ×AC ={12,8,6}, 则 A = 1 2 ∣ A B → × A C → ∣ = 61 A=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\sqrt{61} A=21AB ×AC =61 , 故 I = ∬ Σ ( 2 x + 4 y 3 + z ) d S = 4 61 I=\iint_{\Sigma}\left(2 x+\frac{4 y}{3}+z\right) \mathrm{d} S=4 \sqrt{61} I=Σ(2x+34y+z)dS=461 .

②降维打击法(定积分法)

Σ : z = φ ( x , y ) \Sigma: z=\varphi(x, y) Σ:z=φ(x,y), 其中 ( x , y ) ∈ D (x, y) \in D (x,y)D, 则 d S = 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2   d x   d y \mathrm{d} S=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} \mathrm{~d} x \mathrm{~d} y dS=1+(xz)2+(yz)2  dx dy, 于是 ∬ Σ f ( x , y , z ) d S = ∬ D f [ x , y , φ ( x , y ) ] 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2   d x   d y . \iint_{\Sigma} f(x, y, z) \mathrm{d} S=\iint_{D} f[x, y, \varphi(x, y)] \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} \mathrm{~d} x \mathrm{~d} y . Σf(x,y,z)dS=Df[x,y,φ(x,y)]1+(xz)2+(yz)2  dx dy.
【例】求 I = ∬ Σ z   d S I=\iint_{\Sigma} z \mathrm{~d} S I=Σz dS, 其中 Σ \Sigma Σ x 2 + y 2 + z 2 = 1 x^{2}+y^{2}+z^{2}=1 x2+y2+z2=1 z = x 2 + y 2 z=\sqrt{x^{2}+y^{2}} z=x2+y2 所截的顶部.
【解】由 { x 2 + y 2 + z 2 = 1 z = x 2 + y 2 \left\{\begin{array}{l}x^{2}+y^{2}+z^{2}=1 \\ z=\sqrt{x^{2}+y^{2}}\end{array}\right. {x2+y2+z2=1z=x2+y2 x 2 + y 2 = 1 2 x^{2}+y^{2}=\frac{1}{2} x2+y2=21.
于是 Σ : z = 1 − x 2 − y 2 , ( x , y ) ∈ D \Sigma: z=\sqrt{1-x^{2}-y^{2}},(x, y) \in D Σ:z=1x2y2 ,(x,y)D, 其中 D : x 2 + y 2 ⩽ 1 2 D: x^{2}+y^{2} \leqslant \frac{1}{2} D:x2+y221,
d S = 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2   d σ = 1 1 − x 2 − y 2   d σ \mathrm{d} S=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} \mathrm{~d} \sigma=\frac{1}{\sqrt{1-x^{2}-y^{2}}} \mathrm{~d} \sigma dS=1+(xz)2+(yz)2  dσ=1x2y2 1 dσ
于是 I = ∬ Σ z   d S = ∬ D 1 − x 2 − y 2 ⋅ 1 1 − x 2 − y 2   d σ = ∬ D   d σ = π 2 I=\iint_{\Sigma} z \mathrm{~d} S=\iint_{D} \sqrt{1-x^{2}-y^{2}} \cdot \frac{1}{\sqrt{1-x^{2}-y^{2}}} \mathrm{~d} \sigma=\iint_{D} \mathrm{~d} \sigma=\frac{\pi}{2} I=Σz dS=D1x2y2 1x2y2 1 dσ=D dσ=2π.

四、对坐标的曲面积分

1.定义

Σ \Sigma Σ 为有限的有侧曲面, 函数 P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x, y, z), Q(x, y, z), R(x, y, z) P(x,y,z),Q(x,y,z),R(x,y,z) 在曲面 Σ \Sigma Σ 上有界,

lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) ( Δ S i ) y z \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{y z} limλ0i=1nP(ξi,ηi,ζi)(ΔSi)yz 存在,称此极限为函数 P ( x , y , z ) P(x, y, z) P(x,y,z) 在有侧曲面 Σ \Sigma Σ 上对坐标 y , z y, z y,z 的曲面积分,记为 ∬ Σ P ( x , y , z ) d y   d z \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z ΣP(x,y,z)dy dz, 即 ∬ Σ P ( x , y , z ) d y   d z = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) ( Δ S i ) y z \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{y z} ΣP(x,y,z)dy dz=limλ0i=1nP(ξi,ηi,ζi)(ΔSi)yz;

lim ⁡ i → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) ( Δ S i ) x z \lim _{i \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{x z} limi0i=1nQ(ξi,ηi,ζi)(ΔSi)xz 存在,称此极限为函数 Q ( x , y , z ) Q(x, y, z) Q(x,y,z) 在有侧曲面 Σ \Sigma Σ 上对坐标 x , z x, z x,z 的曲面积分, 记为 ∬ Σ Q ( x , y , z ) d z   d x \iint_{\Sigma} Q(x, y, z) \mathrm{d} z \mathrm{~d} x ΣQ(x,y,z)dz dx, 即 ∬ Σ Q ( x , y , z ) d z   d x = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) ( Δ S i ) x z \iint_{\Sigma} Q(x, y, z) \mathrm{d} z \mathrm{~d} x=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{x z} ΣQ(x,y,z)dz dx=limλ0i=1nQ(ξi,ηi,ζi)(ΔSi)xz;

lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{x y} limλ0i=1nR(ξi,ηi,ζi)(ΔSi)xy 存在, 称此极限为函数 R ( x , y , z ) R(x, y, z) R(x,y,z) 在有侧曲面 Σ \Sigma Σ 上对坐标 x , y x, y x,y 的曲面积分, 记为 ∬ Σ R ( x , y , z ) d x   d y \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y ΣR(x,y,z)dx dy, 即 ∬ Σ R ( x , y , z ) d x   d y = lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{x y} ΣR(x,y,z)dx dy=limλ0i=1nR(ξi,ηi,ζi)(ΔSi)xy,

2.物理意义

对坐标的曲面积分问题的产生 - 流量
Σ \Sigma Σ 为有侧曲面, 流体的流速为 v ⃗ = { P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) } \vec{v}=\{P(x, y, z), Q(x, y, z), R(x, y, z)\} v ={P(x,y,z),Q(x,y,z),R(x,y,z)}, 单位时间内流 过指定侧的曲面的流量 Φ \Phi Φ 的元素法计算思路如下:
 (1) 任取 d S ⃗ = { d y   d z ,   d z   d x ,   d x   d y } ⊂ Σ  (2)  d Φ = v ⃗ ( x , y , z ) ⋅ d S ⃗ = P ( x , y , z ) d y   d z + Q ( x , y , z ) d z   d x + R ( x , y , z ) d x   d y ;   (3)  Φ = ∬ Σ d Φ = ∬ Σ P ( x , y , z ) d y   d z + Q ( x , y , z ) d z   d x + R ( x , y , z ) d x   d y . \begin{aligned} &\text { (1) } 任取 \mathrm{d} \vec{S}=\{\mathrm{d} y \mathrm{~d} z, \mathrm{~d} z \mathrm{~d} x, \mathrm{~d} x \mathrm{~d} y\} \subset \Sigma \\ &\text { (2) } \mathrm{d} \Phi=\vec{v}(x, y, z) \cdot \mathrm{d} \vec{S}=P(x, y, z) \mathrm{d} y \mathrm{~d} z+Q(x, y, z) \mathrm{d} z \mathrm{~d} x+R(x, y, z) \mathrm{d} x \mathrm{~d} y \text {; } \\ &\text { (3) } \Phi=\iint_{\Sigma} \mathrm{d} \Phi=\iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z+Q(x, y, z) \mathrm{d} z \mathrm{~d} x+R(x, y, z) \mathrm{d} x \mathrm{~d} y . \end{aligned}  (1) 任取dS ={dy dz, dz dx, dx dy}Σ (2) dΦ=v (x,y,z)dS =P(x,y,z)dy dz+Q(x,y,z)dz dx+R(x,y,z)dx dy (3) Φ=ΣdΦ=ΣP(x,y,z)dy dz+Q(x,y,z)dz dx+R(x,y,z)dx dy.

3.基本性质

  • ∬ Σ − P   d y   d z + Q   d z   d x + R   d x   d y = − ∬ Σ P   d y   d z + Q   d z   d x + R   d x   d y \iint_{\Sigma^{-}} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=-\iint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y ΣP dy dz+Q dz dx+R dx dy=ΣP dy dz+Q dz dx+R dx dy.
  • ∬ Σ P   d y   d z + Q   d z   d x + R   d x   d y = ∬ Σ 1 P   d y   d z + Q   d z   d x + R   d x   d y + ∬ Σ 2 P   d y   d z + Q   d z   d x + R   d x   d y \iint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=\iint_{\Sigma_{1}} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y+\iint_{\Sigma_{2}} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y ΣP dy dz+Q dz dx+R dx dy=Σ1P dy dz+Q dz dx+R dx dy+Σ2P dy dz+Q dz dx+R dx dy, 其中 Σ = Σ 1 + Σ 2 \Sigma=\Sigma_{1}+\Sigma_{2} Σ=Σ1+Σ2.

设 Σ 关于 x O y 平面 ( 或变量 z ) 对称 , Σ 1 为 Σ 位于 x O y 平面上方的部分 , 若 R ( x , y , − z ) = − R ( x , y , z ) , 则 ∬ Σ R ( x , y , z ) d x   d y = 2 ∬ Σ 1 R ( x , y , z ) d x   d y ; 若 R ( x , y , − z ) = R ( x , y , z ) , 则 ∬ Σ R ( x , y , z ) d x   d y = 0. 设 Σ 关于 y O z 平面 ( 或变量 x ) 对称 , Σ 1 为 Σ 位于 y O z 平面前侧的部分 , 若 P ( − x , y , z ) = − P ( x , y , z ) , 则 ∬ Σ P ( x , y , z ) d y   d z = 2 ∬ Σ 1 P ( x , y , z ) d y   d z ; 若 P ( − x , y , z ) = P ( x , y , z ) , 则 ∬ Σ P ( x , y , z ) d y   d z = 0. 设 Σ 关于 x O z 平面 ( 或变量 y ) 对称 , Σ 1 为 Σ 位于 x O z 平面右侧的部分 , 若 Q ( x , − y , z ) = − Q ( x , y , z ) , 则 ∬ Σ Q ( x , y , z ) d z   d x = 2 ∬ Σ 1 Q ( x , y , z ) d z   d x ; 若 Q ( x , − y , z ) = Q ( x , y , z ) , 则 ∬ Σ Q ( x , y , z ) d z   d x = 0. 设 \Sigma 关于 x O y 平面 (或变量 z ) 对称, \Sigma_{1} 为 \Sigma 位于 x O y 平面上方的部分, \\若 R(x, y,-z)=-R(x, y, z) , 则 \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y=2 \iint_{\Sigma_{1}} R(x, y, z) \mathrm{d} x \mathrm{~d} y ;\\ 若 R(x, y,-z)=R(x, y, z) , 则 \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y=0 . \\设 \Sigma 关于 y O z 平面 (或变量 x ) 对称, \Sigma_{1} 为 \Sigma 位于 y O z 平面前侧的部分,\\ 若 P(-x, y, z)=-P(x, y, z) , 则 \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z=2 \iint_{\Sigma_{1}} P(x, y, z) \mathrm{d} y \mathrm{~d} z ; \\若 P(-x, y, z)=P(x, y, z) , 则 \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z=0 . \\设 \Sigma 关于 x O z 平面(或变量 y ) 对称, \Sigma_{1} 为 \Sigma 位于 x O z 平面右侧的部分, \\若 Q(x,-y, z)=-Q(x, y, z) , 则 \iint_{\Sigma} Q(x, y, z) \mathrm{d} z \mathrm{~d} x=2 \iint_{\Sigma_{1}} Q(x, y, z) \mathrm{d} z \mathrm{~d} x ; \\若 Q(x,-y, z)=Q(x, y, z) , 则 \iint_{\Sigma} Q(x, y, z) \mathrm{d} z \mathrm{~d} x=0 . Σ关于xOy平面(或变量z)对称,Σ1Σ位于xOy平面上方的部分,R(x,y,z)=R(x,y,z),ΣR(x,y,z)dx dy=2Σ1R(x,y,z)dx dy;R(x,y,z)=R(x,y,z),ΣR(x,y,z)dx dy=0.Σ关于yOz平面(或变量x)对称,Σ1Σ位于yOz平面前侧的部分,P(x,y,z)=P(x,y,z),ΣP(x,y,z)dy dz=2Σ1P(x,y,z)dy dz;P(x,y,z)=P(x,y,z),ΣP(x,y,z)dy dz=0.Σ关于xOz平面(或变量y)对称,Σ1Σ位于xOz平面右侧的部分,Q(x,y,z)=Q(x,y,z),ΣQ(x,y,z)dz dx=2Σ1Q(x,y,z)dz dx;Q(x,y,z)=Q(x,y,z),ΣQ(x,y,z)dz dx=0.

4.计算方法

①降维打击法(定积分法)

情形一 、对 ∬ Σ R ( x , y , z ) d x   d y \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y ΣR(x,y,z)dx dy 的计算
(1) 设 Σ : z = φ ( x , y ) \Sigma: z=\varphi(x, y) Σ:z=φ(x,y), 其中 ( x , y ) ∈ D x y (x, y) \in D_{x y} (x,y)Dxy;
(2) 则 ∬ Σ R ( x , y , z ) d x   d y = ± ∬ D x y R [ x , y , φ ( x , y ) ] d x   d y \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y=\pm \iint_{D_{x y}} R[x, y, \varphi(x, y)] \mathrm{d} x \mathrm{~d} y ΣR(x,y,z)dx dy=±DxyR[x,y,φ(x,y)]dx dy,

Σ \Sigma Σ 上一点的法向量与 z z z 轴正向夹角为锐角, 则二重积分前带“+”, 若 Σ \Sigma Σ 上一点的法向量与 z z z 轴的夹角为钝角, 则二重积分前带“一”.

情形二、对 ∬ Σ P ( x , y , z ) d y   d z \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z ΣP(x,y,z)dy dz 的计算
(1) 设 Σ : x = φ ( y , z ) \Sigma: x=\varphi(y, z) Σ:x=φ(y,z), 其中 ( y , z ) ∈ D y z (y, z) \in D_{y z} (y,z)Dyz;
(2) 则 ∬ Σ P ( x , y , z ) d y   d z = ± ∬ D y z P [ φ ( y , z ) , y , z ] d y   d z \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z=\pm \iint_{D_{y z}} P[\varphi(y, z), y, z] \mathrm{d} y \mathrm{~d} z ΣP(x,y,z)dy dz=±DyzP[φ(y,z),y,z]dy dz,

Σ \Sigma Σ 上一点的法向量与 x x x 轴正向夹角为锐角, 则二重积分前带“+”, 若 Σ \Sigma Σ 上一点的法向量与 x x x 轴的夹角为钝角, 则二重积分前带“一”.

情形三、对 ∬ Σ Q ( x , y , z ) d z   d x \iint_{\Sigma} Q(x, y, z) \mathrm{d} z \mathrm{~d} x ΣQ(x,y,z)dz dx 的计算

(1) 设 Σ : y = φ ( x , z ) \Sigma: y=\varphi(x, z) Σ:y=φ(x,z), 其中 ( x , z ) ∈ D x z (x, z) \in D_{x z} (x,z)Dxz;
(2) 则 ∬ Σ Q ( x , y , z ) d z   d x = ± ∬ D x z Q [ x , φ ( x , z ) , z ] d z   d x \iint_{\Sigma} Q(x, y, z) \mathrm{d} z \mathrm{~d} x=\pm \iint_{D_{x z}} Q[x, \varphi(x, z), z] \mathrm{d} z \mathrm{~d} x ΣQ(x,y,z)dz dx=±DxzQ[x,φ(x,z),z]dz dx,

Σ \Sigma Σ 上一点的法向量与 y y y 轴正向夹角为锐角, 则二重积分前带“+”, 若 Σ \Sigma Σ 上一点的法向量与 y y y 轴的夹角为钝角, 则二重积分前带“一”.

【例】计算 ∬ Σ a x   d y   d z + ( z + a ) 2   d x   d y ( x 2 + y 2 + z 2 ) 1 2 \iint_{\Sigma} \frac{a x \mathrm{~d} y \mathrm{~d} z+(z+a)^{2} \mathrm{~d} x \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}} Σ(x2+y2+z2)21ax dy dz+(z+a)2 dx dy, 其中 Σ \Sigma Σ 为下半球面 z = − a 2 − x 2 − y 2 z=-\sqrt{a^{2}-x^{2}-y^{2}} z=a2x2y2 的上侧, a a a 为大于零的常数.

【解】
I = 1 a ∬ Σ a x   d y   d z + ( z + a ) 2   d x   d y ,  I=\frac{1}{a} \iint_{\Sigma} a x \mathrm{~d} y \mathrm{~d} z+(z+a)^{2} \mathrm{~d} x \mathrm{~d} y \text {, } I=a1Σax dy dz+(z+a)2 dx dy
I 1 = 1 a ∬ Σ a x   d y   d z = − 2 ∬ D y z a 2 − y 2 − z 2   d y   d z I_{1}=\frac{1}{a} \iint_{\Sigma} a x \mathrm{~d} y \mathrm{~d} z=-2 \iint_{D_{\mathrm{yz}}} \sqrt{a^{2}-y^{2}-z^{2}} \mathrm{~d} y \mathrm{~d} z I1=a1Σax dy dz=2Dyza2y2z2  dy dz, (-2是利用对称性取向后的那一面,因为向后所以取“—”)

其中 D y z D_{y z} Dyz y O z y O z yOz 平面上的半圆: y 2 + z 2 ⩽ a 2 y^{2}+z^{2} \leqslant a^{2} y2+z2a2, z ⩽ 0 z \leqslant 0 z0, 利用极坐标计算, 得 I 1 = − 2 ∫ π 2 π d θ ∫ 0 a a 2 − r 2 r   d r = − 2 3 π a 3 I_{1}=-2 \int_{\pi}^{2 \pi} \mathrm{d} \theta \int_{0}^{a} \sqrt{a^{2}-r^{2}} r \mathrm{~d} r=-\frac{2}{3} \pi a^{3} I1=2π2πdθ0aa2r2 r dr=32πa3,
I 2 = 1 a ∬ Σ ( z + a ) 2   d x   d y = 1 a ∬ D x y [ a − a 2 − ( x 2 + y 2 ) ] 2   d x   d y = 1 a ∫ 0 2 π d θ ∫ 0 a ( 2 a 2 − 2 a a 2 − r 2 − r 2 ) r   d r = π 6 a 3 , \begin{aligned} I_{2} &=\frac{1}{a} \iint_{\Sigma}(z+a)^{2} \mathrm{~d} x \mathrm{~d} y=\frac{1}{a} \iint_{D_{x y}}\left[a-\sqrt{a^{2}-\left(x^{2}+y^{2}\right)}\right]^{2} \mathrm{~d} x \mathrm{~d} y \\ &=\frac{1}{a} \int_{0}^{2 \pi} \mathrm{d} \theta \int_{0}^{a}\left(2 a^{2}-2 a \sqrt{a^{2}-r^{2}}-r^{2}\right) r \mathrm{~d} r=\frac{\pi}{6} a^{3}, \end{aligned} I2=a1Σ(z+a)2 dx dy=a1Dxy[aa2(x2+y2) ]2 dx dy=a102πdθ0a(2a22aa2r2 r2)r dr=6πa3,
其中 D x y D_{x y} Dxy x O y x O y xOy 平面上的圆域: x 2 + y 2 ⩽ a 2 x^{2}+y^{2} \leqslant a^{2} x2+y2a2, 因此 I = I 1 + I 2 = − π 2 a 3 I=I_{1}+I_{2}=-\frac{\pi}{2} a^{3} I=I1+I2=2πa3.

5.两类曲面积分的关系

∬ Σ P   d y   d z + Q   d z   d x + R   d x   d y = ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S , \iint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=\iint_{\Sigma}(P \cos \alpha+Q \cos \beta+R \cos \gamma) \mathrm{d} S, ΣP dy dz+Q dz dx+R dx dy=Σ(Pcosα+Qcosβ+Rcosγ)dS,

其中 cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha, \cos \beta, \cos \gamma cosα,cosβ,cosγ 是有向曲面 Σ \Sigma Σ 在点 ( x , y , z ) (x, y, z) (x,y,z) 处的法向量的方向余弦

*复习:方向余弦

向量r的方向角 (如图), cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha, \cos \beta, \cos \gamma cosα,cosβ,cosγ 称为向量 r ⃗ \vec{r} r 的方向余弦。
向量 r r r 的坐标为 r = ( x , y , z ) r=(x, y, z) r=(x,y,z), 则 r r r 的坐标余弦的坐标公式为 ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) = ( x ∣ r ∣ , y ∣ r ∣ , z ∣ r ∣ ) (\cos \alpha, \cos \beta, \cos \gamma)=\left(\frac{x}{|r|}, \frac{y}{|r|}, \frac{z}{|r|}\right) (cosα,cosβ,cosγ)=(rx,ry,rz)

【例】设 f ( x , y , z ) f(x, y, z) f(x,y,z) 为连续函数, Σ \Sigma Σ 为平面 x − y + z = 1 x-y+z=1 xy+z=1 在第四卦限部分的上侧,求
I = ∬ Σ { [ f ( x , y , z ) + x ] d y   d z + [ 2 f ( x , y , z ) + y ] d z   d x + [ f ( x , y , z ) + z ] d x   d y } . I=\iint_{\Sigma}\{[f(x, y, z)+x] \mathrm{d} y \mathrm{~d} z+[2 f(x, y, z)+y] \mathrm{d} z \mathrm{~d} x+[f(x, y, z)+z] \mathrm{d} x \mathrm{~d} y\} . I=Σ{[f(x,y,z)+x]dy dz+[2f(x,y,z)+y]dz dx+[f(x,y,z)+z]dx dy}.
【解】 平面 Σ \Sigma Σ 上侧法向量的方向余弦为 cos ⁡ α = 1 3 , cos ⁡ β = − 1 3 , cos ⁡ γ = 1 3 \cos \alpha=\frac{1}{\sqrt{3}}, \cos \beta=-\frac{1}{\sqrt{3}}, \cos \gamma=\frac{1}{\sqrt{3}} cosα=3 1,cosβ=3 1,cosγ=3 1, 则由两类曲面积分之间的
关系,得
I = 1 3 ∬ Σ [ f ( x , y , z ) + x − 2 f ( x , y , z ) − y + f ( x , y , z ) + z ] d S = 1 3 ∬ Σ ( x − y + z ) d S = 1 3 ∬ Σ d S = 1 3 S , \begin{aligned} I &=\frac{1}{\sqrt{3}} \iint_{\Sigma}[f(x, y, z)+x-2 f(x, y, z)-y+f(x, y, z)+z] \mathrm{d} S \\ &=\frac{1}{\sqrt{3}} \iint_{\Sigma}(x-y+z) \mathrm{d} S=\frac{1}{\sqrt{3}} \iint_{\Sigma} \mathrm{d} S=\frac{1}{\sqrt{3}} S, \end{aligned} I=3 1Σ[f(x,y,z)+x2f(x,y,z)y+f(x,y,z)+z]dS=3 1Σ(xy+z)dS=3 1ΣdS=3 1S,
这里 S S S Σ : x − y + z = 1 \Sigma: x-y+z=1 Σ:xy+z=1 的面积, 由于 Σ \Sigma Σ 是边长为 2 \sqrt{2} 2 的正三角形, 故 S = 3 2 S=\frac{\sqrt{3}}{2} S=23 , 因此 I = 1 2 I=\frac{1}{2} I=21.

6.高斯公式

  • Ω \Omega Ω 为几何体, Σ \Sigma Σ Ω \Omega Ω 的外侧曲面, P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x, y, z), Q(x, y, z), R(x, y, z) P(x,y,z),Q(x,y,z),R(x,y,z) Ω \Omega Ω 上一阶连续可偏导, 则

∫ Σ P   d y   d z + Q   d z   d x + R   d x   d y = ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v \int_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=\iiint_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) \mathrm{d} v ΣP dy dz+Q dz dx+R dx dy=Ω(xP+yQ+zR)dv

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值