高等数学 第十一章 曲线积分与曲面积分(上)

第十一章 曲线积分与曲面积分

——made by njtech Melody


曲线积分 {  对弧长的曲线积分   对坐标的曲线积分  \left\{\begin{array}{l}\text { 对弧长的曲线积分 } \\ \text { 对坐标的曲线积分 }\end{array}\right. { 对弧长的曲线积分  对坐标的曲线积分  曲面积分 {  对面积的曲面积分   对坐标的曲面积分  \left\{\begin{array}{l}\text { 对面积的曲面积分 } \\ \text { 对坐标的曲面积分 }\end{array}\right. { 对面积的曲面积分  对坐标的曲面积分 

*.引言

  • 与一元积分类似,都有“大化小”,“常代变”,“近似和”,”取极限“

“大化小”:分为n个小区域

“常代变”:每个小区域中算出题目所需的变量

“近似和”:整体取近似

”取极限“:n取无穷,区域越来越小,结果越来越逼近真实值

理解曲线积分与曲面积分

目前所学的所有积分类型:

  • 一重积分:对线段 x x x 进行微分

lim ⁡ x → 0 ∑ i = 1 n f ( ξ t ) Δ x i = ∫ a b f ( x ) d x \lim _{x \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{t}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x x0limi=1nf(ξt)Δxi=abf(x)dx

  • 二重积分:对面积 x y xy xy 进行微分

lim ⁡ m → ∞ n → ∞ 1 m n ∑ i = 1 m ∑ j = 1 n f ( i m , j n ) = ∬ D f ( x , y ) d x   d y \lim _{\substack{m \rightarrow \infty \\ n \rightarrow \infty}} \frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\frac{i}{m}, \frac{j}{n}\right)=\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y mnlimmn1i=1mj=1nf(mi,nj)=Df(x,y)dx dy

  • 三重积分:对体积 x y z xyz xyz 进行微分

lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ v i = ∭ Ω f ( x , y , z ) d v \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}=\iiint_{\Omega} f(x, y, z) \mathrm{d} v λ0limi=1nf(ξi,ηi,ζi)Δvi=Ωf(x,y,z)dv

​ 从积分的几何意义上说,每重积分都是用现有的维度向高纬度宣战(好中二),试图用当前维度的数值来求出高纬度的数值。

  • 第一类曲线积分(对弧长的曲线积分)

对三维空间的弧长 s s s 进行积分, f ( x , y ) f(x,y) f(x,y) 代表“高度情况”,用二维数值求出三维弧长与底面之间的面积
lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ S i = ∫ L f ( x , y ) d s \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta S_{i}=\int_{L} f(x, y) d s λ0limi=1nf(ξi,ηi)ΔSi=Lf(x,y)ds
image-20220611200229361

  • 第二类曲线积分(对坐标的曲线积分)

由于他是对坐标积分,在几何意义上我暂时理解不了有什么几何意义= =,下面会解释物理意义
lim ⁡ l → 0 ∑ i = 1 n p ( ξ i , η i ) Δ x i = ∫ L Q ( x , y ) d x \lim _{l \rightarrow 0} \sum_{i=1}^{n} p\left(\xi_{i}, \eta_{i}\right) \Delta x_{i}=\int_{L} Q(x, y) d x l0limi=1np(ξi,ηi)Δxi=LQ(x,y)dx

  • 第一类曲面积分(对面积的曲面积分)

对于被积函数如 f ( x , y , z ) f(x,y,z) f(x,y,z) 意味着我们不能直接理解他在四维空间到底指的是什么,降到三维空间而言,他代表这一个曲面的“密度”,进而求出来的是曲面的质量
lim ⁡ λ → 0 ∑ i = 1 m ρ ( ξ i , η i , ζ i ) Δ S i = ∬ z ρ ( x , y , z ) d S \lim _{\lambda \rightarrow 0} \sum_{i=1}^{m} \rho\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i}=\iint_{z} \rho(x, y, z) d S λ0limi=1mρ(ξi,ηi,ζi)ΔSi=zρ(x,y,z)dS

  • 第二类曲面积分(对坐标的曲面积分)

同曲线积分,我也不会解释捏,下面会解释物理意义

一、对弧长的曲线积分

1.定义

L L L x O y x O y xOy 平面内有限的光滑或逐段光滑的曲线段, 函数 f ( x , y ) f(x, y) f(x,y) 在曲线 L L L 上有界, 将 L L L 分为 n n n 个小的曲线段, 记为 Δ s 1 , Δ s 2 , ⋯   , Δ s n \Delta s_{1}, \Delta s_{2}, \cdots, \Delta s_{n} Δs1,Δs2,,Δsn, 任取 ( ξ i , η i ) ∈ Δ s i \left(\xi_{i}, \eta_{i}\right) \in \Delta s_{i} (ξi,ηi)Δsi, 作 ∑ i = 1 n f ( ξ i , η i ) Δ s i \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta s_{i} i=1nf(ξi,ηi)Δsi, 令 λ = \lambda= λ= max ⁡ 1 ⩽ i ⩽ n { Δ s i } \max _{1 \leqslant i \leqslant n}\left\{\Delta s_{i}\right\} max1in{Δsi}, 若 lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta s_{i} limλ0i=1nf(ξi,ηi)Δsi 存在, 称此极限为函数 f ( x , y ) f(x, y) f(x,y) 在曲线段 L L L 上对弧长的曲线 积分, 记为 ∫ L f ( x , y ) d s \int_{L} f(x, y) \mathrm{d} s Lf(x,y)ds, 即 ∫ L f ( x , y ) d s = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i \int_{L} f(x, y) \mathrm{d} s=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta s_{i} Lf(x,y)ds=limλ0i=1nf(ξi,ηi)Δsi.

2.物理意义

L L L x O y x O y xOy 平面内有限的曲线段, 其线密度为 ρ ( x , y ) \rho(x, y) ρ(x,y), 求其质量 m m m 的过程如下:

(1) 将 L L L 分为 n n n 个小的曲线段, 记为 Δ s 1 , Δ s 2 , ⋯   , Δ s n \Delta s_{1}, \Delta s_{2}, \cdots, \Delta s_{n} Δs1,Δs2,,Δsn;

(2) 任取 ( ξ i , η i ) ∈ Δ s i \left(\xi_{i}, \eta_{i}\right) \in \Delta s_{i} (ξi,ηi)Δsi, 则 Δ m i ≈ ρ ( ξ i , η i ) Δ s i ( i = 1 , 2 , ⋯   , n ) \Delta m_{i} \approx \rho\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}(i=1,2, \cdots, n) Δmiρ(ξi,ηi)Δsi(i=1,2,,n), 于是 m ≈ ∑ i = 1 n ρ ( ξ i , η i ) Δ s i m \approx \sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}\right) \Delta s_{i} mi=1nρ(ξi,ηi)Δsi;

(3) 令 λ = max ⁡ 1 ⩽ i ⩽ n { Δ s i } \lambda=\max _{1 \leqslant i \leqslant n}\left\{\Delta s_{i}\right\} λ=max1in{Δsi}, 则 m = lim ⁡ λ → 0 ∑ i = 1 n ρ ( ξ i , η i ) Δ s i m=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} \rho\left(\xi_{i}, \eta_{i}\right) \Delta s_{i} m=limλ0i=1nρ(ξi,ηi)Δsi.

3.基本性质

  • 积分区域可加性

∫ L [ a f ( x , y ) + b g ( x , y ) ] d s = a ∫ L f ( x , y ) d s + b ∫ L g ( x , y ) d s \int_{L}[a f(x, y)+b g(x, y)] \mathrm{d} s=a \int_{L} f(x, y) \mathrm{d} s+b \int_{L} g(x, y) \mathrm{d} s L[af(x,y)+bg(x,y)]ds=aLf(x,y)ds+bLg(x,y)ds

  • 积分限可加性

∫ L f ( x , y ) d s = ∫ L 1 f ( x , y ) d s + ∫ L 2 f ( x , y ) d s , 其中 L = L 1 + L 2 \int_{L} f(x, y) \mathrm{d} s=\int_{L_{1}} f(x, y) \mathrm{d} s+\int_{L_{2}} f(x, y) \mathrm{d} s , 其中 L=L_{1}+L_{2} Lf(x,y)ds=L1f(x,y)ds+L2f(x,y)ds,其中L=L1+L2

  • 积分区域对称性(奇偶性)

    (1)若曲线 L L L 关于 y y y 轴 (即关于变量 x x x ) 对称, L 1 L_{1} L1 为位于 y y y 轴右侧的部分,

    f ( − x , y ) = − f ( x , y ) f(-x, y)=-f(x, y) f(x,y)=f(x,y), 则 ∫ L f ( x , y ) d s = 0 \int_{L} f(x, y) \mathrm{d} s=0 Lf(x,y)ds=0;

    f ( − x , y ) = f ( x , y ) f(-x, y)=f(x, y) f(x,y)=f(x,y), 则 ∫ L f ( x , y ) d s = 2 ∫ L 1 f ( x , y ) d s \int_{L} f(x, y) \mathrm{d} s=2 \int_{L_{1}} f(x, y) \mathrm{d} s Lf(x,y)ds=2L1f(x,y)ds

    (2)若曲线 L L L 关于 x x x 轴 (即关于变量 y y y ) 对称, L 1 L_{1} L1 为位于 x x x 轴上侧的部分,

    f ( x , − y ) = − f ( x , y ) f(x,-y)=-f(x, y) f(x,y)=f(x,y), 则 ∫ L f ( x , y ) d s = 0 \int_{L} f(x, y) \mathrm{d} s=0 Lf(x,y)ds=0;

    f ( x , − y ) = f ( x , y ) f(x,-y)=f(x, y) f(x,y)=f(x,y), 则 ∫ L f ( x , y ) d s = 2 ∫ L 1 f ( x , y ) d s \int_{L} f(x, y) \mathrm{d} s=2 \int_{L_{1}} f(x, y) \mathrm{d} s Lf(x,y)ds=2L1f(x,y)ds.

    (3)若 L L L 关于直线 y = x y=x y=x 对称, 则 ∫ L f ( x , y ) d s = ∫ L f ( y , x ) d s \int_{L} f(x, y) \mathrm{d} s=\int_{L} f(y, x) \mathrm{d} s Lf(x,y)ds=Lf(y,x)ds.

  • ∫ L   d s = l \int_{L} \mathrm{~d} s=l L ds=l, 其中 l l l 为曲线 L L L 的长度.

4.计算方法

①特殊代替法+奇偶性判断法
  • 由于是对弧长进行微分,往不严谨的角度可以说微分的东西跟 x , y x,y x,y 无关,因此可以直接把题目给的线段式子代进积分函数,再结合奇偶性计算。

【例】计算 ∫ L ( x 2 − 2 x y + 3 y 2 ) d s \int_{L}\left(x^{2}-2 x y+3 y^{2}\right) \mathrm{d} s L(x22xy+3y2)ds, 其中 L : x 2 + y 2 = 1 L: x^{2}+y^{2}=1 L:x2+y2=1.

【解】由对称性与奇偶性得 ∫ L − 2 x y d s = 0 \int_{L}-2xy \mathrm{d} s=0 L2xyds=0 ,所以 I = ∫ L ( x 2 − 2 x y + 3 y 2 ) d s = ∫ L ( x 2 + 3 y 2 ) d s I=\int_{L}\left(x^{2}-2 x y+3 y^{2}\right) \mathrm{d} s=\int_{L}\left(x^{2}+3 y^{2}\right) \mathrm{d} s I=L(x22xy+3y2)ds=L(x2+3y2)ds.

​ 因为 L L L 关于直线 y = x y=x y=x 对称, 所以 I = ∫ L ( y 2 + 3 x 2 ) d s I=\int_{L}\left(y^{2}+3 x^{2}\right) \mathrm{d} s I=L(y2+3x2)ds.

​ 于是 2 I = ∫ L ( x 2 + 3 y 2 ) d s + ∫ L ( y 2 + 3 x 2 ) d s = 4 ∫ L ( x 2 + y 2 ) d s = 4 ∫ L   d s = 8 π 2 I=\int_{L}\left(x^{2}+3 y^{2}\right) \mathrm{d} s+\int_{L}\left(y^{2}+3 x^{2}\right) \mathrm{d} s=4 \int_{L}\left(x^{2}+y^{2}\right) \mathrm{d} s=4 \int_{L} \mathrm{~d} s=8 \pi 2I=L(x2+3y2)ds+L(y2+3x2)ds=4L(x2+y2)ds=4L ds=8π

​ 故 I = ∫ L ( x 2 − 2 x y + 3 y 2 ) d s = 4 π I=\int_{L}\left(x^{2}-2 x y+3 y^{2}\right) \mathrm{d} s=4 \pi I=L(x22xy+3y2)ds=4π.

②参数法(定积分法)

情形一、设 L : y = φ ( x ) ( a ⩽ x ⩽ b ) L: y=\varphi(x)(a \leqslant x \leqslant b) L:y=φ(x)(axb), 则 ∫ L f ( x , y ) d s = ∫ a b f [ x , φ ( x ) ] 1 + φ ′ 2 ( x ) d x \int_{L} f(x, y) \mathrm{d} s=\int_{a}^{b} f[x, \varphi(x)] \sqrt{1+\varphi^{\prime 2}(x)} \mathrm{d} x Lf(x,y)ds=abf[x,φ(x)]1+φ′2(x) dx.

情形二、设 L : { x = φ ( t ) , y = ψ ( t ) , ( α ⩽ t ⩽ β ) L:\left\{\begin{array}{l}x=\varphi(t), \\ y=\psi(t),\end{array}(\alpha \leqslant t \leqslant \beta)\right. L:{x=φ(t),y=ψ(t),(αtβ), 则
∫ L f ( x , y ) d s = ∫ a β f [ φ ( t ) , ψ ( t ) ] φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t . \int_{L} f(x, y) \mathrm{d} s=\int_{a}^{\beta} f[\varphi(t), \psi(t)] \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} \mathrm{d} t . Lf(x,y)ds=aβf[φ(t),ψ(t)]φ′2(t)+ψ′2(t) dt.

  • 极坐标法其实就是情形二、只不过变量由 t t t 变成了 θ \theta θ 计算方法同理(适用式子带 x 2 + y 2 x^2+y^2 x2+y2

    L : { x = ρ c o s θ , y = ρ s i n θ , ( α ⩽ θ ⩽ β ) L:\left\{\begin{array}{l}x=\rho cos \theta, \\ y=\rho sin \theta,\end{array}(\alpha \leqslant \theta \leqslant \beta)\right. L:{x=ρcosθ,y=ρsinθ,(αθβ), 则
    ∫ L f ( x , y ) d s = ∫ a β f [ ρ c o s θ , ρ s i n θ ] ρ d ρ . \int_{L} f(x, y) \mathrm{d} s=\int_{a}^{\beta} f[\rho cos \theta, \rho sin \theta] \rho \mathrm{d} \rho . Lf(x,y)ds=aβf[ρcosθ,ρsinθ]ρdρ.

【例】 ∫ L ( x + y ) d s \int_{L}(x+y) d s L(x+y)ds ,其中 L L L 为连接(1,0)及(0,1)两点的直线段

【解】线段式子: y = 1 − x y=1-x y=1x 1 + y ′ 2 ( x ) d x = 2 \sqrt{1+y^{\prime 2}(x)} \mathrm{d} x =\sqrt{2} 1+y′2(x) dx=2 ,积分上下限 ( 0 ⩽ x ⩽ 1 ) (0 \leqslant x \leqslant 1) (0x1)
原式 = ∫ 0 1 1 2 d x = 2 原式=\int_0^1 1\sqrt{2}dx=\sqrt{2} 原式=0112 dx=2

【例】计算 ∫ L x e x 2 + y 2   d s \int_{L} x \mathrm{e}^{\sqrt{x^{2}+y^{2}}} \mathrm{~d} s Lxex2+y2  ds, 其中 L L L : x 2 + y 2 = 4 , ( 0 ⩽ t ⩽ π 4 ) x^{2}+y^{2}=4,(0 \leqslant t \leqslant \frac{\pi}{4}) x2+y2=4,(0t4π)

【解】令 L : { x = 2 cos ⁡ t , y = 2 sin ⁡ t ( 0 ⩽ t ⩽ π 4 ) L_{}:\left\{\begin{array}{l}x=2 \cos t, \\ y=2 \sin t\end{array}\left(0 \leqslant t \leqslant \frac{\pi}{4}\right)\right. L:{x=2cost,y=2sint(0t4π),
∫ L x e x 2 + y 2   d s = e 2 ∫ L x   d s = e 2 ∫ 0 π 4 2 cos ⁡ t ⋅ 2   d t = 2 2 e 2 , \quad \int_{L_{}} x \mathrm{e}^{\sqrt{x^{2}+y^{2}}} \mathrm{~d} s=\mathrm{e}^{2} \int_{L_{}} x \mathrm{~d} s=\mathrm{e}^{2} \int_{0}^{\frac{\pi}{4}} 2 \cos t \cdot 2 \mathrm{~d} t=2 \sqrt{2} \mathrm{e}^{2}, Lxex2+y2  ds=e2Lx ds=e204π2cost2 dt=22 e2,

二、对坐标的曲线积分

1.定义

  • 二维空间

L L L x O y x O y xOy 平面上的有向曲线段, 函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) L L L 上有界,

lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i ) Δ x i \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}\right) \Delta x_{i} limλ0i=1nP(ξi,ηi)Δxi 存在, 称此极限为函数 P ( x , y ) P(x, y) P(x,y) 沿有向曲线段 L L L 对坐标 x x x 的曲线积分, 记 为 ∫ L P ( x , y ) d x \int_{L} P(x, y) \mathrm{d} x LP(x,y)dx ,即 ∫ L P ( x , y ) d x = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i ) Δ x i \int_{L} P(x, y) \mathrm{d} x=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}\right) \Delta x_{i} LP(x,y)dx=limλ0i=1nP(ξi,ηi)Δxi

lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i ) Δ y i \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}\right) \Delta y_{i} limλ0i=1nQ(ξi,ηi)Δyi 存在, 称此极限为函数 Q ( x , y ) Q(x, y) Q(x,y) 沿有向曲线段 L L L 对坐标 y y y 的曲线积 分, 记为 ∫ L Q ( x , y ) d y \int_{L} Q(x, y) \mathrm{d} y LQ(x,y)dy, 即 ∫ L Q ( x , y ) d y = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i ) Δ y i \int_{L} Q(x, y) \mathrm{d} y=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}\right) \Delta y_{i} LQ(x,y)dy=limλ0i=1nQ(ξi,ηi)Δyi

  • 三维空间

L L L 为三维空间的有向曲线段,函数 P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x, y, z), Q(x, y, z), R(x, y, z) P(x,y,z),Q(x,y,z),R(x,y,z) L L L 上有界,

lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) Δ x i \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta x_{i} limλ0i=1nP(ξi,ηi,ζi)Δxi 存在, 称此极限为函数 P ( x , y , z ) P(x, y, z) P(x,y,z) 沿有向曲线段 L L L 对坐 标 x x x 的曲线积分, 记为 ∫ L P ( x , y , z ) d x \int_{L} P(x, y, z) \mathrm{d} x LP(x,y,z)dx, 即 ∫ L P ( x , y , z ) d x = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) Δ x i \int_{L} P(x, y, z) \mathrm{d} x=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta x_{i} LP(x,y,z)dx=limλ0i=1nP(ξi,ηi,ζi)Δxi;

lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) Δ y i \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta y_{i} limλ0i=1nQ(ξi,ηi,ζi)Δyi 存在, 称此极限为函数 Q ( x , y , z ) Q(x, y, z) Q(x,y,z) 沿有向曲线段 L L L 对坐标 y y y 的 曲线积分, 记为 ∫ L Q ( x , y , z ) d y \int_{L} Q(x, y, z) \mathrm{d} y LQ(x,y,z)dy, 即 ∫ L Q ( x , y , z ) d y = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) Δ y i \int_{L} Q(x, y, z) \mathrm{d} y=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta y_{i} LQ(x,y,z)dy=limλ0i=1nQ(ξi,ηi,ζi)Δyi

lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) Δ z i \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta z_{i} limλ0i=1nR(ξi,ηi,ζi)Δzi 存在, 称此极限为函数 R ( x , y , z ) R(x, y, z) R(x,y,z) 沿有向曲线段 L L L 对坐标 z z z 的 曲线积分, 记为 ∫ L R ( x , y , z ) d z \int_{L} R(x, y, z) \mathrm{d} z LR(x,y,z)dz, 即 ∫ L R ( x , y , z ) d z = lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) Δ z i \int_{L} R(x, y, z) \mathrm{d} z=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta z_{i} LR(x,y,z)dz=limλ0i=1nR(ξi,ηi,ζi)Δzi.

2.物理意义(以二维空间为例)

  • :物体在变力作用下沿有向曲线段做功

F ⃗ ( x , y ) = { P ( x , y ) , Q ( x , y ) } , L \vec{F}(x, y)=\{P(x, y), Q(x, y)\}, L F (x,y)={P(x,y),Q(x,y)},L x O y x O y xOy 平面内的有向曲线段, 物体在 F ⃗ ( x , y ) \vec{F}(x, y) F (x,y) 的作用下沿 L L L 从起点 A A A 到达终点 B B B, 元素法求力所做的功的方法如下:
d s ⃗ ⊂ L \mathrm{d} \vec{s} \subset L ds L, 其中 d s = { d x ,   d y } \mathrm{d} s=\{\mathrm{d} x, \mathrm{~d} y\} ds={dx, dy}, 则 d W = F ⃗ ( x , y ) ⋅ d s ⃗ = P ( x , y ) d x + \mathrm{d} W=\vec{F}(x, y) \cdot \mathrm{d} \vec{s}=P(x, y) \mathrm{d} x+ dW=F (x,y)ds =P(x,y)dx+ Q ( x , y ) d y Q(x, y) \mathrm{d} y Q(x,y)dy,于是 W = ∫ L P ( x , y ) d x + Q ( x , y ) d y W=\int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y W=LP(x,y)dx+Q(x,y)dy.

image-20220612091201792

3.基本性质(二维空间为例)

  • ∫ L − P ( x , y ) d x + Q ( x , y ) d y = − ∫ L P ( x , y ) d x + Q ( x , y ) d y . \int_{L^{-}} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=-\int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y . LP(x,y)dx+Q(x,y)dy=LP(x,y)dx+Q(x,y)dy.
  • ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ L 1 P ( x , y ) d x + Q ( x , y ) d y + ∫ L 2 P ( x , y ) d x + Q ( x , y ) d y \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{L_{1}} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y+\int_{L_{2}} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y LP(x,y)dx+Q(x,y)dy=L1P(x,y)dx+Q(x,y)dy+L2P(x,y)dx+Q(x,y)dy,
    其中 L = L 1 + L 2 L=L_{1}+L_{2} L=L1+L2.

4.计算方法

①参数法(定积分)
  • 参数法适用于二维、三维空间

情形一、设 L : y = φ ( x ) ( a ⩽ x ⩽ b ) L: y=\varphi(x)(a \leqslant x \leqslant b) L:y=φ(x)(axb), 则
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a b { P [ x , φ ( x ) ] + Q [ x , φ ( x ) ] φ ′ ( x ) } d x . \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{a}^{b}\left\{P[x, \varphi(x)]+Q[x, \varphi(x)] \varphi^{\prime}(x)\right\} \mathrm{d} x . LP(x,y)dx+Q(x,y)dy=ab{P[x,φ(x)]+Q[x,φ(x)]φ(x)}dx.

情形二、设 L : { x = φ ( t ) , y = ψ ( t ) , ( α ⩽ t ⩽ β ) L:\left\{\begin{array}{l}x=\varphi(t), \\ y=\psi(t),\end{array}(\alpha \leqslant t \leqslant \beta)\right. L:{x=φ(t),y=ψ(t),(αtβ), 则
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a β { P [ φ ( t ) , ψ ( t ) ] φ ′ ( t ) + Q [ φ ( t ) , ψ ( t ) ] ψ ′ ( t ) } d t . \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{a}^{\beta}\left\{P[\varphi(t), \psi(t)] \varphi^{\prime}(t)+Q[\varphi(t), \psi(t)] \psi^{\prime}(t)\right\} \mathrm{d} t . LP(x,y)dx+Q(x,y)dy=aβ{P[φ(t),ψ(t)]φ(t)+Q[φ(t),ψ(t)]ψ(t)}dt.

  • 极坐标法其实就是情形二、只不过变量由 t t t 变成了 θ \theta θ 计算方法同理(适用式子带 x 2 + y 2 x^2+y^2 x2+y2

    L : { x = ρ c o s θ , y = ρ s i n θ , ( α ⩽ θ ⩽ β ) L:\left\{\begin{array}{l}x=\rho cos \theta, \\ y=\rho sin \theta,\end{array}(\alpha \leqslant \theta \leqslant \beta)\right. L:{x=ρcosθ,y=ρsinθ,(αθβ), 则
    ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a β { P [ ρ c o s θ , ρ s i n θ ] ( − ρ s i n θ ) + Q [ ρ c o s θ , ρ s i n θ ] ρ c o s θ } d t . \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{a}^{\beta}\left\{P[\rho cos \theta, \rho sin \theta] (-\rho sin \theta)+Q[\rho cos \theta, \rho sin \theta] \rho cos \theta\right\} \mathrm{d} t . LP(x,y)dx+Q(x,y)dy=aβ{P[ρcosθ,ρsinθ](ρsinθ)+Q[ρcosθ,ρsinθ]ρcosθ}dt.

【例】 ∫ Γ x   d x + y   d y + ( x + y − 1 ) d z \int_{\Gamma} x \mathrm{~d} x+y \mathrm{~d} y+(x+y-1) \mathrm{d} z Γx dx+y dy+(x+y1)dz, 其中 Γ \Gamma Γ 是从点 ( 1 , 1 , 1 ) (1,1,1) (1,1,1) 到点 ( 2 , 3 , 4 ) (2,3,4) (2,3,4) 的一段直线.

【解】
{ x = 1 + t y = 1 + 2 t z = 1 + 3 t ⇒ { d x = d t d y = 2 d t d z = 3 d t ∫ 0 1 [ ( 1 + t ) × 1 + ( 1 + 2 t ) × z + ( 1 + 3 t ) × 3 ] d t = 13 \begin{array}{l} \left\{\begin{array} { l } { x = 1 + t } \\ { y = 1 + 2 t } \\ { z = 1 + 3 t } \end{array} \Rightarrow \left\{\begin{array}{l} d x=d t \\ d y=2 d t \\ d z=3 d t \end{array}\right.\right. \\ \int_{0}^{1}[(1+t) \times 1+(1+2 t) \times z+(1+3 t) \times 3] d t=13 \end{array} x=1+ty=1+2tz=1+3t dx=dtdy=2dtdz=3dt01[(1+t)×1+(1+2t)×z+(1+3t)×3]dt=13

【例】 ∮ L x y   d x \oint_{L} x y \mathrm{~d} x Lxy dx, 其中 L L L 为圆周 ( x − R ) 2 + y 2 = R 2 ( R > 0 ) (x-R)^{2}+y^{2}=R^{2}(R>0) (xR)2+y2=R2(R>0) x x x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行).

image-20220612092813231

【解】 ∮ L x y   d x = L 1 ( 圆弧部分 ) + L 2 ( 坐标轴部分 ) \oint_{L} x y \mathrm{~d} x=L1(圆弧部分)+L2(坐标轴部分) Lxy dx=L1(圆弧部分)+L2(坐标轴部分)

​ L2:y=0,∴ ∮ L 2 x y   d x = 0 \oint_{L_2} x y \mathrm{~d} x=0 L2xy dx=0

​ L1:令 { x = R + R c o s θ , y = R s i n θ } \{ x=R+Rcos\theta ,y=Rsin\theta \} {x=R+Rcosθ,y=Rsinθ} ( 0 ≤ θ ≤ π ) (0 \leq \theta \leq \pi ) (0θπ)
∮ L 1 x y   d x = ∫ 0 π R 2 ( 1 + c o s θ ) R s i n θ ⋅ ( − R s i n θ ) d θ = − π 2 R 3 \oint_{L_1} x y \mathrm{~d} x=\int_0^\pi R^2(1+cos\theta)Rsin\theta\cdot(-Rsin\theta)d\theta = -\frac{\pi}{2} R^3 L1xy dx=0πR2(1+cosθ)Rsinθ(Rsinθ)dθ=2πR3

②格林公式(二维空间)
  • 格林公式是牛顿-莱布尼茨公式的推广。

牛顿-莱布尼茨公式:如果函数 f ( x ) f(x) f(x)在区间 [ a , b ] [a,b] [a,b]上连续,并且存在原函数 F ( x ) F(x) F(x)

∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) d x=F(b)-F(a) abf(x)dx=F(b)F(a)

我的理解: F ( x ) F(x) F(x) x x x 微分(求导),实现将“边界计算”转为“长度计算”

格林公式:设 D D D x O y x O y xOy 平面上连通的有限闭区域, L L L 为闭区域 D D D 的正向边界, 函数 P ( x , y ) P(x, y) P(x,y), Q ( x , y ) Q(x, y) Q(x,y) D D D 上连续可偏导, 则

∮ L P ( x , y ) d x + Q ( x , y ) d y = ∬ D [ ∂ Q ∂ x − ∂ P ∂ y ] d x d y \oint_{L} P(x, y) d x+Q(x, y) d y=\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y LP(x,y)dx+Q(x,y)dy=D[xQyP]dxdy

  • 正向边界:指闭区域 D D D 始终在边界的“左边”,即外逆里顺

我的理解:同上,对 P ( x , y ) P(x,y) P(x,y) x , y x,y x,y 微分(求全导),实现将”边界计算“转化为“面积计算”,只不过 P ( x ) P(x) P(x)已经对x求偏导了,那就让他对 y y y 求一次偏导,同理对 Q ( x , y ) Q(x,y) Q(x,y) 也是如此,让他对 x x x 求一次偏导

格林公式的计算
单连通区域(无洞)

【例】 ∮ L x 2 y d x − x y 2 d y ,其中 L : x 2 + y 2 = a 2  逆时针  \oint_{L} x^{2} y d x-x y^{2} d y ,其中 L: x^{2}+y^{2}=a^{2} \text { 逆时针 } Lx2ydxxy2dy,其中L:x2+y2=a2 逆时针 

【解】令 P = x 2 y , Q = − x y 2 P=x^2y,Q=-xy^2 P=x2y,Q=xy2 ∂ p ∂ y = x 2 ∂ Q ∂ x = − y 2 \frac{\partial p}{\partial y}=x^{2} \quad \frac{\partial Q}{\partial x}=-y^{2} yp=x2xQ=y2 ∂ Q ∂ x − ∂ P ∂ y = − ( x 2 + y 2 ) \quad \frac{\partial Q}{\partial x}- \frac{\partial P}{\partial y}=-(x^2+y^2) xQyP=(x2+y2)

原式 = ∬ D ( − y 2 − x 2 ) d x d y = − ∫ 0 2 π d θ ∫ 0 a ρ 2 ⋅ ρ d ρ = − π a 4 2 原式=\iint_{D}\left(-y^{2}-x^{2}\right) d x d y=-\int_{0}^{2 \pi} d \theta \int_{0}^{a} \rho^{2} \cdot \rho d \rho=-\frac{\pi a^4}{2} 原式=D(y2x2)dxdy=02πdθ0aρ2ρdρ=2πa4

复连通区域(有洞)

【例】 I = ∮ L y d x − x d y 2 ( x 2 + y 2 ) I=\oint_{L} \frac{y d x-x d y}{2\left(x^{2}+y^{2}\right)} I=L2(x2+y2)ydxxdy ,其中 L : ( x − 1 ) 2 + y 2 = 2 L:(x-1)^2+y^2=2 L:(x1)2+y2=2 (逆时针)

【解】显然在(0,0)处不可取,故是一个复连通区域,要挖一个洞。 I = D I=D I=D D = D 1 + D 2 D=D_1+D_2 D=D1+D2

image-20220612110040092

对于 D 1 D1 D1:(第一次格林公式:边界→面积)

P = y 2 ( x 2 + y 2 ) P=\frac{y}{2(x^2+y^2)} P=2(x2+y2)y Q = − x 2 ( x 2 + y 2 ) Q=\frac{-x}{2(x^2+y^2)} Q=2(x2+y2)x

p y ′ = 2 ( x 2 + y 2 ) − y ⋅ 4 y 4 ( x 2 + y 2 ) = 2 x 2 − 2 y 2 4 ( x 2 + y 2 ) 2 p_{y}^{\prime}=\frac{2\left(x^{2}+y^{2}\right)-y \cdot 4 y}{4\left(x^{2}+y^{2}\right)}=\frac{2 x^{2}-2 y^{2}}{4\left(x^{2}+y^{2}\right)^{2}} py=4(x2+y2)2(x2+y2)y4y=4(x2+y2)22x22y2 Q ′ x = − 2 ( x 2 + y 2 ) + x ⋅ 4 x 4 ( x 2 + y 2 ) 2 = 2 x 2 − 2 y 2 4 ( x 2 + y 2 ) 2 Q^{\prime} x=\frac{-2\left(x^{2}+y^{2}\right)+x \cdot 4 x}{4\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x^{2}-2 y^{2}}{4\left(x^{2}+y^{2}\right)^{2}} Qx=4(x2+y2)22(x2+y2)+x4x=4(x2+y2)22x22y2 Q ′ x − P ′ y = 0 Q^{\prime} x-P^{\prime} y=0 QxPy=0
l 1 + l 2 = ∮ l 1 y d x − x d y 2 ( x 2 + y 2 ) + ∮ l 2 y d x − x d y 2 ( x 2 + y 2 ) = ∬ D 1 0 d x d y = D 1 = 0 l_1+l_2=\oint_{l_1} \frac{y d x-x d y}{2\left(x^{2}+y^{2}\right)}+\oint_{l_2} \frac{y d x-x d y}{2\left(x^{2}+y^{2}\right)}=\iint_{D_1} 0 d x d y=D_1=0 l1+l2=l12(x2+y2)ydxxdy+l22(x2+y2)ydxxdy=D10dxdy=D1=0
对于D2:(第二次格林公式:面积→边界)
D 2 = − l 2 = − ∮ l 2 y d x − x d y 2 ( x 2 + y 2 ) = 1 2 r 2 ∫ l 2 − y d x + x d y D_2=-l_2=-\oint_{l_{2}} \frac{y d x-x d y}{2\left(x^{2}+y^{2}\right)}=\frac{1}{2 r^2} \int_{l_2}-y d x+x d y D2=l2=l22(x2+y2)ydxxdy=2r21l2ydx+xdy
P = − y P=-y P=y Q = x Q=x Q=x p y ′ = − 1 p_{y}^{\prime}=-1 py=1 Q x ′ = 1 Q_{x}^{\prime}=1 Qx=1 Q ′ x − P ′ y = − 2 Q^{\prime} x-P^{\prime} y=-2 QxPy=2
1 2 S 2 ∫ c − y d x + x d y = − 1 r 2 ∬ D 2 d x d y = − 1 r 2 ⋅ π r 2 = − π \frac{1}{2 S^2} \int_{c}-y d x+x d y=-\frac{1}{r^2}\iint_{D2}dxdy=-\frac{1}{r^2}\cdot\pi r^2 =-\pi 2S21cydx+xdy=r21D2dxdy=r21πr2=π
综上: I = ∮ L y d x − x d y 2 ( x 2 + y 2 ) = − π I=\oint_{L} \frac{y d x-x d y}{2\left(x^{2}+y^{2}\right)}=-\pi I=L2(x2+y2)ydxxdy=π

格林公式的应用

求面积:
S D = ∬ D d x d y = 1 2 ∮ L x d y − y d x S_D=\iint_Ddxdy=\frac{1}{2}\oint_Lxdy-ydx SD=Ddxdy=21Lxdyydx
【例】计算星形线 x = a cos ⁡ 3 t , y = a sin ⁡ 3 t x=a \cos ^{3} t, y=a \sin ^{3} t x=acos3t,y=asin3t 所围图形的面积.

【解】
A = 1 2 ∮ L x   d y − y   d x = 1 2 ∫ 0 2 π [ a cos ⁡ 3 t ( a sin ⁡ 3 t ) ′ − a sin ⁡ 3 t ( a cos ⁡ 3 t ) ′ ] d t = 1 2 ∫ 0 2 π 3 a 2 sin ⁡ 2 t cos ⁡ 2 t   d t = 3 a 2 2 ∫ 0 2 π ( 1 − cos ⁡ 4 t 8 ) d t = 3 8 π a 2 . \begin{aligned} A &=\frac{1}{2} \oint_{L} x \mathrm{~d} y-y \mathrm{~d} x=\frac{1}{2} \int_{0}^{2 \pi}\left[a \cos ^{3} t\left(a \sin ^{3} t\right)^{\prime}-a \sin ^{3} t\left(a \cos ^{3} t\right)^{\prime}\right] \mathrm{d} t \\ &=\frac{1}{2} \int_{0}^{2 \pi} 3 a^{2} \sin ^{2} t \cos ^{2} t \mathrm{~d} t=\frac{3 a^{2}}{2} \int_{0}^{2 \pi}\left(\frac{1-\cos 4 t}{8}\right) \mathrm{d} t=\frac{3}{8} \pi a^{2} . \end{aligned} A=21Lx dyy dx=2102π[acos3t(asin3t)asin3t(acos3t)]dt=2102π3a2sin2tcos2t dt=23a202π(81cos4t)dt=83πa2.

曲线积分与路径无关的条件

解释:对于满足一些条件的曲线,起点和终点的位置固定,沿不同的路线积分,其积分值相同,即曲线积分只与起点和终点有关,与路线的选取无关。

定理 :设 D D D 为单连通区域,函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) 在区域 D D D 内连续可偏导, 则下列四个命题等价:

  • 曲线积分 ∫ L P ( x , y ) d x + Q ( x , y ) d y \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y LP(x,y)dx+Q(x,y)dy 与路径无关.

  • 对区域 D D D 内任意闭曲线 C C C, 有 ∮ C P ( x , y ) d x + Q ( x , y ) d y = 0 \oint_{C} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=0 CP(x,y)dx+Q(x,y)dy=0.

  • 区域 D D D 内恒有 ∂ Q ∂ x = ∂ P ∂ y \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} xQ=yP (柯西 − - 黎曼条件).

  • 在区域 D D D 内存在二元函数 u ( x , y ) u(x, y) u(x,y), 使得 d u ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y \mathrm{d} u(x, y)=P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y du(x,y)=P(x,y)dx+Q(x,y)dy.

利用该条件计算曲线积分

【例】已知点 O ( 0 , 0 ) O(0,0) O(0,0) 及点 A ( 1 , 1 ) A(1,1) A(1,1), 且曲线积分 I = ∫ C  ( a x cos ⁡ y − y 2 sin ⁡ x ) d x + ( b y cos ⁡ x − x 2 sin ⁡ y ) d y I=\int_{\text {C }}\left(a x \cos y-y^{2} \sin x\right) \mathrm{d} x+\left(b y \cos x-x^{2} \sin y\right) \mathrm{d} y I=(axcosyy2sinx)dx+(bycosxx2siny)dy 与路径无关,试确定常数 a , b a, b a,b, 并求 I I I.
【思路探索】由积分与路径无关, 可得 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ, 利用恒等式求 a , b a, b a,b; 再选择简单路径 ( 0 , 0 ) (0,0) (0,0) ( 0 , 1 ) (0,1) (0,1) ( 0 , 1 ) (0,1) (0,1) ( 1 , 1 ) (1,1) (1,1) 求曲线积分.
解: 令 P ( x , y ) = a x cos ⁡ y − y 2 sin ⁡ x , Q ( x , y ) = b y cos ⁡ x − x 2 sin ⁡ y P(x, y)=a x \cos y-y^{2} \sin x, Q(x, y)=b y \cos x-x^{2} \sin y P(x,y)=axcosyy2sinx,Q(x,y)=bycosxx2siny, ∂ P ∂ y = − a x sin ⁡ y − 2 y sin ⁡ x , ∂ Q ∂ x = − b y sin ⁡ x − 2 x sin ⁡ y \frac{\partial P}{\partial y}=-a x \sin y-2 y \sin x, \frac{\partial Q}{\partial x}=-b y \sin x-2 x \sin y yP=axsiny2ysinx,xQ=bysinx2xsiny
由题意知 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ,得 a = b = 2 a=b=2 a=b=2,所以
I = ∫ ( 0 , 0 ) ( 1 , 1 ) P   d x + Q   d y = ∫ ( 0 , 0 ) ( 0 , 1 ) P   d x + Q   d y + ∫ ( 0 , 1 ) ( 1 , 1 ) P   d x + Q   d y = ∫ 0 1 Q ( 0 , y ) d y + ∫ 0 1 P ( x , 1 ) d x = ∫ 0 1 2 y   d y + ∫ 0 1 ( 2 x cos ⁡ 1 − sin ⁡ x ) d x = 2 cos ⁡ 1 \begin{aligned} I &=\int_{(0,0)}^{(1,1)} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{(0,0)}^{(0,1)} P \mathrm{~d} x+Q \mathrm{~d} y+\int_{(0,1)}^{(1,1)} P \mathrm{~d} x+Q \mathrm{~d} y \\ &=\int_{0}^{1} Q(0, y) \mathrm{d} y+\int_{0}^{1} P(x, 1) \mathrm{d} x=\int_{0}^{1} 2 y \mathrm{~d} y+\int_{0}^{1}(2 x \cos 1-\sin x) \mathrm{d} x=2 \cos 1 \end{aligned} I=(0,0)(1,1)P dx+Q dy=(0,0)(0,1)P dx+Q dy+(0,1)(1,1)P dx+Q dy=01Q(0,y)dy+01P(x,1)dx=012y dy+01(2xcos1sinx)dx=2cos1

求全微分方程

定理:若一阶微分方程为 $P(x,y)dx+Q(x,y)dy $ 若曲线积分与路径无关,即 ∂ Q ∂ x = ∂ P ∂ y \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} xQ=yP ,则称此方程为全微分方程,其隐式通解为: u ( x , y ) = ∫ x 0 , y 0 ( x , y ) P ( x , y ) d x + Q ( x , y ) d y = C u(x,y)=\int^{(x,y)}_{x_0,y_0}P(x,y)dx+Q(x,y)dy=C u(x,y)=x0,y0(x,y)P(x,y)dx+Q(x,y)dy=C

【例】设 P   d x + Q   d y = ( x 2 + 2 x y − y 2 ) d x + ( x 2 − 2 x y − y 2 ) d y P \mathrm{~d} x+Q \mathrm{~d} y=\left(x^{2}+2 x y-y^{2}\right) \mathrm{d} x+\left(x^{2}-2 x y-y^{2}\right) \mathrm{d} y P dx+Q dy=(x2+2xyy2)dx+(x22xyy2)dy, 求 u ( x , y ) u(x, y) u(x,y), 使得 d u ( x , y ) = P   d x \mathrm{d} u(x, y)=P \mathrm{~d} x du(x,y)=P dx + Q   d y +Q \mathrm{~d} y +Q dy.
【解】
∂ u ∂ x = x 2 + 2 x y − y 2 \frac{\partial u}{\partial x}=x^{2}+2 x y-y^{2} xu=x2+2xyy2, 积分得 u = ∫ ( x 2 + 2 x y − y 2 ) d x + φ ( y ) = 1 3 x 3 + x 2 y − x y 2 + φ ( y ) . u=\int\left(x^{2}+2 x y-y^{2}\right) \mathrm{d} x+\varphi(y)=\frac{1}{3} x^{3}+x^{2} y-x y^{2}+\varphi(y) . u=(x2+2xyy2)dx+φ(y)=31x3+x2yxy2+φ(y).
y y y 求导得 ∂ u ∂ y = x 2 − 2 x y + φ ′ ( y ) = Q = x 2 − 2 x y − y 2 \frac{\partial u}{\partial y}=x^{2}-2 x y+\varphi^{\prime}(y)=Q=x^{2}-2 x y-y^{2} yu=x22xy+φ(y)=Q=x22xyy2,
所以 φ ′ ( y ) = − y 2 \varphi^{\prime}(y)=-y^{2} φ(y)=y2, 从而 φ ( y ) = − 1 3 y 3 + C \varphi(y)=-\frac{1}{3} y^{3}+C φ(y)=31y3+C,故 u ( x , y ) = 1 3 x 3 + x 2 y − x y 2 − 1 3 y 3 + C u(x, y)=\frac{1}{3} x^{3}+x^{2} y-x y^{2}-\frac{1}{3} y^{3}+C u(x,y)=31x3+x2yxy231y3+C.

③斯托克斯公式

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值