概率统计2020-2021考试试题(1)——南京工业大学2023年春季

2020-2021 试题卷(1)

——made by njtech_计2104 Melody

填空题

  1. 三个元件独立工作, 正常工作的概率分别为 1 2 , 2 3 , 3 4 \frac{1}{2}, \frac{2}{3}, \frac{3}{4} 21,32,43, 则至少有一个元件不能正常工作的概率为 ()

    【答案】 3 4 \frac{3}{4} 43

    【解析】至少有一个元件不能正常工作的概率就是1减去所有元件都能正常工作的概率,即 1 − 1 2 × 2 3 × 3 4 = 3 4 1 - \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = \frac{3}{4} 121×32×43=43

  2. 设随机变量 X 、 Y X 、 Y XY 相互独立且都服从 ( 0 , 3 ) (0,3) (0,3) 上的均匀分布, Z − min ⁡ ( X Y ) Z-\min (X Y) Zmin(XY), 则 P {   Z ≤ 1 } = P\{\ Z \leq 1\}= P{ Z1}=

【答案】 5 9 \frac{5}{9} 95

【解析】X和Y都是服从(0,3)的均匀分布的,所以得到X和Y在区间(0,1)内的概率都是1/3。然后分别考虑下面四种情况

  • X,Y都在(0,1)区间内: ( 1 3 ) 2 = 1 9 (\frac{1}{3})^2=\frac{1}{9} (31)2=91
  • X在(0,1)区间,Y在(1,3)区间: ( 1 3 ) ( 2 3 ) = 2 9 (\frac{1}{3})(\frac{2}{3})=\frac{2}{9} (31)(32)=92
  • X在(1,3)区间,Y在(0,1)区间: ( 2 3 ) ( 1 3 ) = 2 9 (\frac{2}{3})(\frac{1}{3})=\frac{2}{9} (32)(31)=92

所以, P {   Z ≤ 1 } P\{\ Z \leq 1\} P{ Z1}的总概率是 5 9 \frac{5}{9} 95

  1. 设 随 机 变 量 X X X 的 密 度 函 数 为 f ( x ) = 1 π e − x 2 + 2 x − 1 f(x)=\frac{1}{\sqrt{\pi}} e^{-x^2+2 x-1} f(x)=π 1ex2+2x1, 则 E X = , D X = E X={\quad, D X=} EX=,DX=

【答案】 E X = 1 EX=1 EX=1, D X = 1 2 DX=\frac{1}{2} DX=21

【解析】
f ( x ) = 1 π e − x 2 + 2 x − 1 = 1 π e − ( x − 1 ) 2 = 1 π e − ( x − 1 ) 2 2 × 1 2 f(x)=\frac{1}{\sqrt{\pi}} e^{-x^2+2 x-1}=\frac{1}{\sqrt{\pi}} e^{-(x-1)^2}=\frac{1}{\sqrt{\pi}} e^{-\frac{(x-1)^2}{2\times \frac{1}{2} }} f(x)=π 1ex2+2x1=π 1e(x1)2=π 1e2×21(x1)2
这就是一个正态分布,满足 $X \sim N(1,\frac{1}{2}) $ ,所以均值是1,方差是 1 2 \frac{1}{2} 21

  1. 设总体 X ∼ N ( 2 , 2 2 ) , X ˉ X \sim N\left(2,2^2\right), \bar{X} XN(2,22),Xˉ 为容量为 16 的样本均值, 则 2 ( X ˉ − 2 ) ∼ 2(\bar{X}-2) \sim 2(Xˉ2) . (写出分布类型和参数).

【答案】 N ( 0 , 1 ) N(0,1) N(0,1)

【解析】首先,我们知道总体 X X X服从正态分布 N ( 2 , 2 2 ) N\left(2,2^2\right) N(2,22),其均值 μ = 2 \mu = 2 μ=2,方差 σ 2 = 2 2 = 4 \sigma^2 = 2^2 = 4 σ2=22=4

X ˉ ∼ N ( 2 , 1 4 ) \bar{X} \sim N(2,\frac{1}{4}) XˉN(2,41)
对于 2 ( X ˉ − 2 ) 2(\bar{X}-2) 2(Xˉ2),期望-2,方差乘4 即得答案

数学期望的性质: E ( X − c ) = E X − c E(X-c)=EX-c E(Xc)=EXc

方差的性质: D ( C X ) = C 2 D X D(C X)=C^2 D X D(CX)=C2DX

样本均值的性质: x ˉ ∼ N ( μ , σ 2 n ) \bar{x} \sim N(\mu,\frac{\sigma^2}{n}) xˉN(μ,nσ2)

  1. 设取自正态总体 X ∼ N ( μ , 1. 5 2 ) X \sim N\left(\mu, 1.5^2\right) XN(μ,1.52) 容量为 9 的样本, 样本均值 x = 65 x=65 x=65, 则末知参数 μ \mu μ 95 % 95 \% 95% 置信 区间是 ( z 0.05 = 1.645 , z 0.025 = 1.96 ) \left(z_{0.05}=1.645, z_{0.025}=1.96\right) (z0.05=1.645,z0.025=1.96).

【答案】 ( 64.02 , 65.98 ) (64.02, 65.98) (64.02,65.98)

【解析】置信区间的计算公式是 x ˉ ± z α / 2 ⋅ σ n \bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} xˉ±zα/2n σ,其中 x ˉ \bar{x} xˉ是样本均值, z α / 2 z_{\alpha/2} zα/2是标准正态分布的 α 2 \frac{\alpha}{2} 2α分位数, σ \sigma σ是总体标准差, n n n是样本大小。

因为我们需要计算 95 % 95\% 95%的置信区间,所以 α = 0.05 \alpha = 0.05 α=0.05 z α / 2 = z 0.025 = 1.96 z_{\alpha/2} = z_{0.025} = 1.96 zα/2=z0.025=1.96

代入这些值,我们得到置信区间为 65 ± 1.96 ⋅ 1.5 9 = 65 ± 0.98 65 \pm 1.96 \cdot \frac{1.5}{\sqrt{9}} = 65 \pm 0.98 65±1.969 1.5=65±0.98

因此, μ \mu μ 95 % 95\% 95%置信区间是 ( 64.02 , 65.98 ) (64.02, 65.98) (64.02,65.98),与给定的答案相符。

选择题

  1. A 、   B \mathrm{A} 、 \mathrm{~B} A B 为两随机 事件, P ( A ) = 1 / 3 , P ( B ∣ A ) = 1 / 4 P(A)=1 / 3, P(B \mid A)=1 / 4 P(A)=1/3,P(BA)=1/4, 则 P ( A B ˉ ) = P(A \bar{B})= P(ABˉ)=
    (A) 1 2 \frac{1}{2} 21; (B) 1 4 \frac{1}{4} 41; © 1 3 \frac{1}{3} 31 : (D) 1 6 \frac{1}{6} 61.

【答案】(B) 1 4 \frac{1}{4} 41

【解析】

根据概率的乘法规则, P ( A ∩ B ) = P ( A ) P ( B ∣ A ) = 1 3 ⋅ 1 4 = 1 12 P(A \cap B) = P(A)P(B|A) = \frac{1}{3} \cdot \frac{1}{4} = \frac{1}{12} P(AB)=P(A)P(BA)=3141=121。这是事件A和事件B同时发生的概率。

P ( A B ˉ ) P(A \bar{B}) P(ABˉ)可以看做是事件A发生的概率减去事件A和事件B同时发生的概率,即 P ( A B ˉ ) = P ( A ) − P ( A ∩ B ) = 1 3 − 1 12 = 1 4 P(A \bar{B}) = P(A) - P(A \cap B) = \frac{1}{3} - \frac{1}{12} = \frac{1}{4} P(ABˉ)=P(A)P(AB)=31121=41

  1. 设二维随机变量 X , Y X, Y X,Y 独立同分布, 且 X ∼ ( − 1 1 1 2 1 2 ) X \sim\left(\begin{array}{cc}-1 & 1 \\ \frac{1}{2} & \frac{1}{2}\end{array}\right) X(121121), 则下列结论正确的是
    (A) P { X = Y } = 1 2 P\{X=Y\}=\frac{1}{2} P{X=Y}=21;
    (B) P { X + Y = 0 } = 1 4 P\{X+Y=0\}=\frac{1}{4} P{X+Y=0}=41;
    © P { X + Y = 0 } = 1 3 P\{X+Y=0\}=\frac{1}{3} P{X+Y=0}=31;
    (D) P { X = Y } = 1 4 P\{X=Y\}=\frac{1}{4} P{X=Y}=41

【答案】(A) P { X = Y } = 1 2 P\{X=Y\}=\frac{1}{2} P{X=Y}=21

【解析】在这个问题中,我们知道二维随机变量 X X X Y Y Y是独立同分布的,并且都遵循离散均匀分布,其取值为-1和1,对应的概率分别为 1 2 \frac{1}{2} 21 1 2 \frac{1}{2} 21

对于选项(A) P { X = Y } P\{X=Y\} P{X=Y},因为 X X X Y Y Y是同分布的,所以他们取相同值的概率就是 X X X Y Y Y分别取-1和1的概率之和,即 P { X = Y } = P { X = − 1 , Y = − 1 } + P { X = 1 , Y = 1 } = 1 2 × 1 2 + 1 2 × 1 2 = 1 2 P\{X=Y\} = P\{X=-1, Y=-1\} + P\{X=1, Y=1\} = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} P{X=Y}=P{X=1,Y=1}+P{X=1,Y=1}=21×21+21×21=21

对于选项(B)、© P { X + Y = 0 } P\{X+Y=0\} P{X+Y=0},因为 X X X Y Y Y只能取-1和1,所以他们的和只有在一个取-1,另一个取1的时候才会等于0。所以 P { X + Y = 0 } = P { X = − 1 , Y = 1 } + P { X = 1 , Y = − 1 } = 1 2 × 1 2 + 1 2 × 1 2 = 1 2 P\{X+Y=0\} = P\{X=-1, Y=1\} + P\{X=1, Y=-1\} = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} P{X+Y=0}=P{X=1,Y=1}+P{X=1,Y=1}=21×21+21×21=21,与选项(B)和©的答案不符。

对于选项(D) P { X = Y } P\{X=Y\} P{X=Y},我们已经在选项(A)中计算过,其值为 1 2 \frac{1}{2} 21,与选项(D)的答案不符。

因此,正确的选项是(A) P { X = Y } = 1 2 P\{X=Y\}=\frac{1}{2} P{X=Y}=21

  1. 设随机变量 X 1 , X 2 , ⋯   , X n ( n > 1 ) X_1, X_2, \cdots, X_n(n>1) X1,X2,,Xn(n>1) 独立同分布, 且 D X 1 = σ 2 D X_1=\sigma^2 DX1=σ2, 令 X ˉ = 1 n ∑ i = 1 n x i \bar{X}=\frac{1}{n} \sum_{i=1}^n x_i Xˉ=n1i=1nxi, 则
    (A) cov ⁡ ( X 1 , X ˉ ) = ( n − 1 ) n σ 2 \operatorname{cov}\left(X_1, \bar{X}\right)=\frac{(n-1)}{n} \sigma^2 cov(X1,Xˉ)=n(n1)σ2;
    (B) cov ⁡ ( X 1 , X ˉ ) = σ 2 \operatorname{cov}\left(X_1, \bar{X}\right)=\sigma^2 cov(X1,Xˉ)=σ2;
    © D ( X 1 + X ˉ ) = ( n + 3 ) n σ 2 D\left(X_1+\bar{X}\right)=\frac{(n+3)}{n} \sigma^2 D(X1+Xˉ)=n(n+3)σ2;
    (D) D ( X 1 + X ˉ ) = ( n + 1 ) n σ 2 D\left(X_1+\bar{X}\right)=\frac{(n+1)}{n} \sigma^2 D(X1+Xˉ)=n(n+1)σ2

【答案】© D ( X 1 + X ˉ ) = ( n + 3 ) n σ 2 D\left(X_1+\bar{X}\right)=\frac{(n+3)}{n} \sigma^2 D(X1+Xˉ)=n(n+3)σ2

【解析】根据方差的性质,我们知道 D ( X 1 + X ˉ ) = D ( X 1 ) + D ( X ˉ ) + 2 cov ⁡ ( X 1 , X ˉ ) D(X_1+\bar{X}) = D(X_1) + D(\bar{X}) + 2\operatorname{cov}(X_1, \bar{X}) D(X1+Xˉ)=D(X1)+D(Xˉ)+2cov(X1,Xˉ)

使用协方差的线性性质,即 cov ⁡ ( a X + b Y , Z ) = a cov ⁡ ( X , Z ) + b cov ⁡ ( Y , Z ) \operatorname{cov}(aX+bY, Z) = a\operatorname{cov}(X, Z) + b\operatorname{cov}(Y, Z) cov(aX+bY,Z)=acov(X,Z)+bcov(Y,Z)。将其应用到 cov ⁡ ( X 1 , X ˉ ) \operatorname{cov}(X_1, \bar{X}) cov(X1,Xˉ)的计算中,得到:

cov ⁡ ( X 1 , X ˉ ) = cov ⁡ ( X 1 , 1 n ∑ i = 1 n x i ) = 1 n ∑ i = 1 n cov ⁡ ( X 1 , x i ) \operatorname{cov}(X_1, \bar{X}) = \operatorname{cov}\left(X_1, \frac{1}{n} \sum_{i=1}^n x_i\right) = \frac{1}{n} \sum_{i=1}^n \operatorname{cov}(X_1, x_i) cov(X1,Xˉ)=cov(X1,n1i=1nxi)=n1i=1ncov(X1,xi)

由于 X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn是独立同分布的, cov ⁡ ( X 1 , X 1 ) = D X 1 = σ 2 \operatorname{cov}(X_1, X_1)=D X_1=\sigma^2 cov(X1,X1)=DX1=σ2 cov ⁡ ( X 1 , X i ) = 0 \operatorname{cov}(X_1, X_i)=0 cov(X1,Xi)=0(对于 i ≠ 1 i \neq 1 i=1)。因此,我们可以进一步得到:

cov ⁡ ( X 1 , X ˉ ) = 1 n ⋅ σ 2 \operatorname{cov}(X_1, \bar{X}) = \frac{1}{n} \cdot \sigma^2 cov(X1,Xˉ)=n1σ2.

将这些值带入方差的计算公式,我们得到 D ( X 1 + X ˉ ) = σ 2 + 1 n σ 2 + 2 1 n σ 2 = ( n + 3 ) n σ 2 D(X_1+\bar{X}) = \sigma^2 + \frac{1}{n}\sigma^2 + 2\frac{1}{n}\sigma^2 = \frac{(n+3)}{n} \sigma^2 D(X1+Xˉ)=σ2+n1σ2+2n1σ2=n(n+3)σ2

  1. X ∼ N ( μ , σ 2 ) , 则  P { ∣ X − μ ∣ < σ } X \sim N\left(\mu, \sigma^2\right) \text {, 则 } P\{|X-\mu|<\sigma\} XN(μ,σ2) P{Xμ<σ}
    (A) 与 μ \mu μ σ 2 \sigma^2 σ2 都有关;
    (B) 与 μ \mu μ 有关, 与 σ 2 \sigma^2 σ2 无关 ;
    © 与 μ \mu μ 无关, 与 σ 2 \sigma^2 σ2 有关 ;
    (D) 与 μ \mu μ σ 2 \sigma^2 σ2 都无关.

【答案】(D) 与 μ \mu μ σ 2 \sigma^2 σ2 都无关

【解析】 X X X是服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)的随机变量。表达式 P { ∣ X − μ ∣ < σ } P\{|X-\mu|<\sigma\} P{Xμ<σ}表示的是 X X X的取值在 μ − σ \mu - \sigma μσ μ + σ \mu + \sigma μ+σ之间的概率。

对于标准正态分布,即 μ = 0 \mu = 0 μ=0 σ = 1 \sigma = 1 σ=1的情况, P { ∣ X − μ ∣ < σ } = P { ∣ X ∣ < 1 } P\{|X-\mu|<\sigma\}=P\{|X|<1\} P{Xμ<σ}=P{X<1}的值是固定的,大约是0.6827,这是正态分布的一个性质。

对于一般的正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),我们可以通过标准化变量 Z = X − μ σ Z = \frac{X - \mu}{\sigma} Z=σXμ将其转化为标准正态分布。在这种情况下, P { ∣ X − μ ∣ < σ } = P { ∣ Z ∣ < 1 } P\{|X-\mu|<\sigma\}=P\{|Z|<1\} P{Xμ<σ}=P{Z<1},其值仍然是0.6827,这个值既不依赖于 μ \mu μ也不依赖于 σ 2 \sigma^2 σ2

  1. 对正态总体 X ∼ N ( μ , σ 2 ) X \sim \mathrm{N}\left(\mu, \sigma^2\right) XN(μ,σ2) 的均值 μ \mu μ 进行假设检验, 若在显著性水平 α = 0.05 \alpha=0.05 α=0.05 下 接受假设 H 0 : μ = μ 0 H_0: \mu=\mu_0 H0:μ=μ0, 则在显著性水平 α = 0.025 \alpha=0.025 α=0.025
    (A) 拒绝 H 0 H_0 H0;
    (B) 接受 H 0 H_0 H0 且接受域相同 ;
    © 接受 H 0 H_0 H0 但接受域不同 ;
    (D) 可能接受 H 0 H_0 H0 也可能拒绝 H 0 H_0 H0

【答案】© 接受 H 0 H_0 H0 但接受域不同

【解析】假设检验的过程是基于观察数据和显著性水平 α \alpha α来决定是否接受或者拒绝原假设 H 0 H_0 H0。显著性水平 α \alpha α定义了我们愿意接受的类型I错误的概率,即错误地拒绝 H 0 H_0 H0的概率。

如果在显著性水平 α = 0.05 \alpha=0.05 α=0.05下我们接受了假设 H 0 : μ = μ 0 H_0: \mu=\mu_0 H0:μ=μ0,那么当我们降低显著性水平到 α = 0.025 \alpha=0.025 α=0.025,也就是说我们更严格地控制了类型I错误的概率,那么我们仍然会接受假设 H 0 H_0 H0。这是因为我们的检验统计量的值已经使我们在 α = 0.05 \alpha=0.05 α=0.05的情况下接受了 H 0 H_0 H0,因此在 α \alpha α更小的情况下,我们也会接受 H 0 H_0 H0

然而,接受域(即使我们接受 H 0 H_0 H0的观察数据范围)会发生变化。因为 α \alpha α变小,我们对于拒绝 H 0 H_0 H0的证据需要更加严格,因此接受 H 0 H_0 H0的观察数据范围会变小。因此选项© "接受 H 0 H_0 H0 但接受域不同"是正确的。

某班老师发现在考试及格的学生中有80%的学生按时交作业,而在考试不及格的学生中只有30%的学生按时交作业,现在知道有80%的学生考试及格,从这个班学生中随机抽取一个学生,(1)求抽到的这位学生是按时交作业的概率; (2) 已知抽到的这位学生是按时交作业,求这位考生考试及格的概率.

【解】设 A = { \mathrm{A}=\{ A={ 考试及格 } , A = { \}, A=\{ },A={ 考试不及格 } , B = { \}, \mathrm{B}=\{ },B={ 按时交作业 } \} }
(1) 由题意, P ( B ∣ A ) = 0.8 , P ( B ∣ A ˉ ) = 0.3 , P ( A ) = 0.8 , P ( A ˉ ) = 0.2 P(B \mid A)=0.8, P(B \mid \bar{A})=0.3, P(A)=0.8, P(\bar{A})=0.2 P(BA)=0.8,P(BAˉ)=0.3,P(A)=0.8,P(Aˉ)=0.2,由全概率公式
P ( B ) = P ( A ) P ( B ∣ A ) + P ( A ˉ ) P ( B ∣ A ˉ ) = 0.8 × 0.8 + 0.2 × 0.3 = 0.7 P(B)=P(A) P(B \mid A)+P(\bar{A}) P(B \mid \bar{A})=0.8 \times 0.8+0.2 \times 0.3=0.7 P(B)=P(A)P(BA)+P(Aˉ)P(BAˉ)=0.8×0.8+0.2×0.3=0.7
(2) 由条件概率
P ( A ∣ B ) = P ( A B ) P ( B ) = P ( A ) P ( B ∣ A ) P ( B ) = 0.8 × 0.8 0.7 = 0.9143. P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{P(A) P(B \mid A)}{P(B)}=\frac{0.8 \times 0.8}{0.7}=0.9143 . P(AB)=P(B)P(AB)=P(B)P(A)P(BA)=0.70.8×0.8=0.9143.

一箱子内有5个红球,4个白球,现从中任取2球,令x为取出的两个球中红球的个数,求(1) X的分布律; (2) X的分布函数; (3) D(3X +6).

【答案】
X的分布律为:
X ∼ ( 0 1 2 1 6 5 9 5 18 ) X \sim\left(\begin{array}{ccc} 0 & 1 & 2 \\ \frac{1}{6} & \frac{5}{9} & \frac{5}{18} \end{array}\right) X(0611952185)
X的分布函数为:
F ( x ) = { 0 , x < 0 , 1 6 , 0 ≤ x < 1 , 13 18 , 1 ≤ x < 2 , 1 , x ≥ 2. F(x)=\left\{\begin{array}{cc}0, & x<0, \\ \frac{1}{6}, & 0 \leq x<1, \\ \frac{13}{18}, & 1 \leq x<2, \\ 1, & x \geq 2 .\end{array}\right. F(x)= 0,61,1813,1,x<0,0x<1,1x<2,x2.
D(3X+6)的值为5。

【解析】
在这个问题中,我们需要找出取出两个球中红球的个数X的分布律、分布函数和D(3X +6)。

(1) 对于X的分布律,我们首先分别计算X取0,1,2时的概率。当X=0时,表示两个球都是白球,概率为 C 5 0 C 4 2 C 9 2 \frac{C_5^0 C_4^2}{C_9^2} C92C50C42。当X=1时,表示一个红球一个白球,概率为 C 5 1 C 4 1 C 9 2 \frac{C_5^1 C_4^1}{C_9^2} C92C51C41。当X=2时,表示两个球都是红球,概率为 C 5 2 C 4 0 C 9 2 \frac{C_5^2 C_4^0}{C_9^2} C92C52C40

(2) 对于X的分布函数,这实际上是X取不同值时的累积概率。按照定义,我们得到了X的分布函数为上述形式。

(3) 对于方差,加不影响,乘翻倍,所以 D ( 3 X + 6 ) = 9 D X D(3X+6)=9DX D(3X+6)=9DX
E X = 1 × 5 9 + 2 × 5 18 = 10 9 , E X 2 = 5 3 , D X = E X 2 − ( E X ) 2 = 35 81 D ( 3 X + 6 ) = 9 D X = 5 \begin{aligned} & E X=1 \times \frac{5}{9}+2 \times \frac{5}{18}=\frac{10}{9}, E X^2=\frac{5}{3}, D X=E X^2-(E X)^2=\frac{35}{81} \\ & D(3 X+6)=9 D X=5 \end{aligned} EX=1×95+2×185=910,EX2=35,DX=EX2(EX)2=8135D(3X+6)=9DX=5

设X、Y独立同分布且均服从[0,1]上的均匀分布,求Z=X+Y密度函数.

【答案】
Z的密度函数为:
f Z ( z ) = { z , 0 < z < 1 , 2 − z , 1 ≤ z < 2 , 0 , z ≥ 2. f_Z(z)=\left\{\begin{array}{cc} z, & 0<z<1, \\ 2-z, & 1 \leq z<2, \\ 0, & z \geq 2. \end{array}\right. fZ(z)= z,2z,0,0<z<1,1z<2,z2.

【解析】
这个问题中,我们需要求两个独立的、服从[0,1]上的均匀分布的随机变量X和Y的和Z的密度函数。对于两个独立的随机变量X和Y,其和Z的密度函数可以通过卷积积分来得到,即 f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f_{\mathrm{Z}}(z)=\int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx fZ(z)=+fX(x)fY(zx)dx

在这个问题中,由于X和Y都是在[0,1]上的均匀分布,所以它们的密度函数都是在[0,1]之间取1,否则取0。所以,对于给定的z,只有当0<x<1且0<z-x<1,即0<x<1且x<z<x+1时,积分的值不为零。因此,我们可以分段计算Z的密度函数。

当0<z<1时,积分上下限为0和z,所以 f Z ( z ) = ∫ 0 z d x = z f_Z(z)=\int_0^z dx=z fZ(z)=0zdx=z
当1≤z<2时,积分上下限为z-1和1,所以 f Z ( z ) = ∫ z − 1 1 d x = 2 − z f_Z(z)=\int_{z-1}^1 dx=2-z fZ(z)=z11dx=2z
当z≥2时,积分的值为零,所以 f Z ( z ) = 0 f_Z(z)=0 fZ(z)=0

【书面过程】 X , Y X, Y X,Y 的密度函数分别为 f X ( x ) = { 1 , 0 < x < 1 0 ,  其他  , f Y ( y ) = { 1 , 0 < y < 1 0 ,  其他  f_X(x)=\left\{\begin{array}{lc}1, & 0<x<1 \\ 0, & \text { 其他 }\end{array}, f_Y(y)=\left\{\begin{array}{lc}1, & 0<y<1 \\ 0, & \text { 其他 }\end{array}\right.\right. fX(x)={1,0,0<x<1 其他 ,fY(y)={1,0,0<y<1 其他  f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f_{\mathrm{Z}}(z)=\int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) d x fZ(z)=+fX(x)fY(zx)dx
显然仅当 { 0 < x < 1 0 < z − x < 1 \left\{\begin{array}{c}0<x<1 \\ 0<z-x<1\end{array}\right. {0<x<10<zx<1 { 0 < x < 1 x < z < x + 1 \left\{\begin{array}{c}0<x<1 \\ x<z<x+1\end{array}\right. {0<x<1x<z<x+1, 上述积分不等于零, 故
f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x = { ∫ 0 z d x = z , 0 < z < 1 , ∫ z − 1 1 d x = 2 − z , 1 ≤ z < 2 0 , z ≥ 2 f_Z(z)=\int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) d x=\left\{\begin{array}{cc} \int_0^z d x=z, & 0<z<1, \\ \int_{z-1}^1 d x=2-z, & 1 \leq z<2 \\ 0, & z \geq 2 \end{array}\right. fZ(z)=+fX(x)fY(zx)dx= 0zdx=z,z11dx=2z,0,0<z<1,1z<2z2

均匀分布的密度函数: f ( x ) = 1 b − a , a < x < b f(x)= \frac{1}{b-a}, a<x<b f(x)=ba1,a<x<b,对于本题: f ( x ) = 1 f(x)=1 f(x)=1

一生产线生产成品包装箱, 设每箱平均重量为 50 K g 50 \mathrm{Kg} 50Kg, 标准差为 5 K g 5 \mathrm{Kg} 5Kg, 如果用最大 5 吨的卡车装载, 用中心极限定理计算每车最多装多少箱可以保证卡车不超重的概率大于 0.977 ( Φ ( 2 ) = 0.977 ) (\Phi(2)=0.977) (Φ(2)=0.977).

【解】设可以装 n \mathrm{n} n 箱, X i X_i Xi 表示第 i ( i = 1 , 2 , ⋯   , n ) i(\mathrm{i}=1,2, \cdots, \mathrm{n}) i(i=1,2,,n) 箱的重量, 则 X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 独立同分布, 总重量 X = X 1 + X 2 + ⋯ + X n X=X_1+X_2+\cdots+X_n X=X1+X2++Xn,
E X i = 50 , D X i = 5 2 , E X = 50 n , D X = 25 n ,  E X_i=50, D X_i=5^2, E X=50 n, D X=25 n \text {, } EXi=50,DXi=52,EX=50n,DX=25n
(2) 故由 L-L 中心极限定理得
P { X ≤ 5000 } = P { X − 50 n 5 n ≤ 5000 − 50 n 5 n } ≈ Φ ( 1000 − 10 n n ) > 0.977 = Φ ( 2 ) . P\{X \leq 5000\}=P\left\{\frac{X-50 n}{5 \sqrt{n}} \leq \frac{5000-50 n}{5 \sqrt{n}}\right\} \approx \Phi\left(\frac{1000-10 n}{\sqrt{n}}\right)>0.977=\Phi(2) . P{X5000}=P{5n X50n5n 500050n}Φ(n 100010n)>0.977=Φ(2).
于是, 1000 − 10 n n > 2 \frac{1000-10 n}{\sqrt{n}}>2 n 100010n>2, 解得 n < 98.019 \mathrm{n}<98.019 n<98.019, 即最多装 98 箱可以使卡车不超载的概率大于 0.977.

设二维随机变量 ( X , Y ) (X, Y) (X,Y) 联合密度函数是 f ( x , y ) = { 1 , 0 < x < 1 , ∣ y ∣ < x , 0 ,  其他,  f(x, y)=\left\{\begin{array}{cc}1, & 0<x<1,|y|<x, \\ 0, & \text { 其他, }\end{array}\right. f(x,y)={1,0,0<x<1,y<x, 其他 求:

(1) X , Y X, Y X,Y 的边缘密度函数并判断 X , Y X, Y X,Y 是否独立; (2) E X , E Y , D X , D Y ; ( 3 ) E X, E Y, D X, D Y ;(3) EX,EY,DX,DY;(3) Z = X + 2 Y Z=X+2 Y Z=X+2Y, 求 D Z D Z DZ.

【解】 (1)
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = { ∫ − x x 1 d y = 2 x , 0 < x < 1 0 ,  其他  f_X(x)=\int_{-\infty}^{+\infty} f(x, y) d y=\left\{\begin{array}{cc}\int_{-x}^x 1 d y=2 x, & 0<x<1 \\ 0, & \text { 其他 }\end{array}\right. fX(x)=+f(x,y)dy={xx1dy=2x,0,0<x<1 其他 

f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x = { ∫ − y 1 d x = 1 + y , − 1 < y < 0 ∫ y 1 d x = 1 − y 0 < y < 1 0  其他  f_Y(y)=\int_{-\infty}^{+\infty} f(x, y) d x=\left\{\begin{array}{cc} \int_{-y}^1 d x=1+y, & -1<y<0 \\ \int_y^1 d x=1-y & 0<y<1 \\ 0 & \text { 其他 } \end{array}\right. fY(y)=+f(x,y)dx= y1dx=1+y,y1dx=1y01<y<00<y<1 其他 

因为 f ( x , y ) ≠ f X ( x ) f Y ( y ) f(x, y) \neq f_X(x) f_Y(y) f(x,y)=fX(x)fY(y), 所以 X , Y X, Y X,Y 不独立.

(2)
 EX  = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x f ( x , y ) d x d y = ∫ 0 1 d x ∫ − x x x d y = 2 3 , E X 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x 2 f ( x , y ) d x d y = ∫ 0 + ∞ d x ∫ − x x x 2 d y = 1 2 , D X = E X 2 − ( E X ) 2 = 1 18  。同理,  E Y = 0 , D Y = 1 6 , E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y = ∫ 0 1 d x ∫ − x x x y d y = 0 。 \begin{gathered} \text { EX }=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) d x d y=\int_0^1 d x \int_{-x}^x x d y=\frac{2}{3}, \\ E X^2=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^2 f(x, y) d x d y=\int_0^{+\infty} d x \int_{-x}^x x^2 d y=\frac{1}{2}, \\ D X=E X^2-(E X)^2=\frac{1}{18} \text { 。同理, } E Y=0, D Y=\frac{1}{6}, \\ E(X Y)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f(x, y) d x d y=\int_0^1 d x \int_{-x}^x x y d y=0 。 \end{gathered}  EX =++xf(x,y)dxdy=01dxxxxdy=32,EX2=++x2f(x,y)dxdy=0+dxxxx2dy=21,DX=EX2(EX)2=181 。同理EY=0,DY=61,E(XY)=++xyf(x,y)dxdy=01dxxxxydy=0

E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y = ∫ 0 1 d x ∫ − x x x y d y = 0  。  E(X Y)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f(x, y) d x d y=\int_0^1 d x \int_{-x}^x x y d y=0 \text { 。 } E(XY)=++xyf(x,y)dxdy=01dxxxxydy=0  

cov ⁡ ( X , Y ) = E ( X Y ) − E X ⋅ E Y = 0 − 2 3 ⋅ 0 = 0 \operatorname{cov}(X, Y)=E(X Y)-E X \cdot E Y=0-\frac{2}{3} \cdot 0=0 cov(X,Y)=E(XY)EXEY=0320=0
(3) D Z = D ( X + 2 Y ) = D X + 4 D Y + 4 Cov ⁡ ( X , Y ) = 13 18 \mathrm{DZ}=\mathrm{D}(\mathrm{X}+2 \mathrm{Y})=\mathrm{DX}+4 \mathrm{DY}+4 \operatorname{Cov}(X, Y)=\frac{13}{18} DZ=D(X+2Y)=DX+4DY+4Cov(X,Y)=1813.

设总体 X X X 的分布函数为 F ( x , θ ) = { 1 − x − θ , x > 1 , 0 , x ≤ 1 , F(x, \theta)=\left\{\begin{array}{cl}1-x^{-\theta}, & x>1, \\ 0, & x \leq 1,\end{array}\right. F(x,θ)={1xθ,0,x>1,x1, 其中 θ \theta θ 为末知参数, X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 为来自总体X简单随机样本, 求:
(1) θ \theta θ 的矩估计量; (2) θ \theta θ 的极大似然估计量.

【解】: 概率密度函数 f ( x ) = F ′ ( x ) = { θ x θ + 1 , x > 1 0 , x ≤ 1 f(x)=F^{\prime}(x)=\left\{\begin{array}{cc}\frac{\theta}{x^{\theta+1}}, & x>1 \\ 0, & x \leq 1\end{array}\right. f(x)=F(x)={xθ+1θ,0,x>1x1

(1)总体 X X X 的数学期望 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ 1 + ∞ x θ x θ + 1 d x = θ θ − 1 E(X)=\int_{-\infty}^{+\infty} x f(x) d x=\int_1^{+\infty} x \frac{\theta}{x^{\theta+1}} d x=\frac{\theta}{\theta-1} E(X)=+xf(x)dx=1+xxθ+1θdx=θ1θ

θ θ − 1 = X ˉ \frac{\theta}{\theta-1}=\bar{X} θ1θ=Xˉ, 则得末知参数 θ \theta θ 的矩估计量为 θ ^ = X ˉ X ˉ − 1 \hat{\theta}=\frac{\bar{X}}{\bar{X}-1} θ^=Xˉ1Xˉ

(2)设 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn X 1 , X 2 , ⋯   , X n X_1, X_2, \cdots, X_n X1,X2,,Xn 相应于的样本值, 则似然函数为
L ( θ ) = ∏ i = 1 n ( θ x θ + 1 ) = ( θ n ∏ i = 1 n x θ + 1 ) θ n , x i > 1 ( i = 1 , 2 , ⋯   , n ) . ln ⁡ L = n ln ⁡ θ − ( θ + 1 ) ( ∑ i = 1 n ln ⁡ x i ) , d ln ⁡ L d θ = n θ − ∑ i = 1 n ln ⁡ x i , d ln ⁡ L d θ = 0 ,  解得  θ  的极大似然估计值为  θ ^ = n ( ∑ i = 1 n ln ⁡ x i ) . \begin{gathered} L(\theta)=\prod_{i=1}^n (\frac{\theta}{x^{\theta+1}})= (\frac{\theta^n}{\prod\limits_{i=1}^nx^{\theta+1}}) \theta^n , x_i>1(i=1,2, \cdots, n) . \\ \ln L=n \ln \theta-(\theta+1)\left(\sum\limits_{i=1}^n \ln x_i\right), \frac{d \ln L}{d \theta}=\frac{n}{\theta}-\sum_{i=1}^n \ln x_i, \\ \frac{d \ln L}{d \theta}=0, \text { 解得 } \theta \text { 的极大似然估计值为 } \hat{\theta}=\frac{n}{\left(\sum\limits_{i=1}^n \ln x_i\right)} . \end{gathered} L(θ)=i=1n(xθ+1θ)=(i=1nxθ+1θn)θn,xi>1(i=1,2,,n).lnL=nlnθ(θ+1)(i=1nlnxi),dθdlnL=θni=1nlnxi,dθdlnL=0, 解得 θ 的极大似然估计值为 θ^=(i=1nlnxi)n.

生产线生产袋装产品, 正常情况下每袋 1 K g 1 \mathrm{Kg} 1Kg, 准差不得超过 15   g 15 \mathrm{~g} 15 g, 且每袋重量服 从正态分布, 现检查机器生产情况, 从中任取 9 袋, 测得均值为 x ˉ = 998   g \bar{x}=998 \mathrm{~g} xˉ=998 g, 样本均方差为 s = 30   g s=30 \mathrm{~g} s=30 g, 问在显著性水平 α = 0.05 \alpha=0.05 α=0.05 下机器生产是否正常? ( t 0.05 ( 8 ) = 1.8595 , t 0.025 ( 8 ) = 2.3060 , χ 0.05 2 ( 8 ) = 15.507 , χ 0.05 2 ( 9 ) = 16.909 ) \left(t_{0.05}(8)=1.8595, t_{0.025}(8)=2.3060, \chi_{0.05}^2(8)=15.507, \chi_{0.05}^2(9)=16.909\right) (t0.05(8)=1.8595,t0.025(8)=2.3060,χ0.052(8)=15.507,χ0.052(9)=16.909)

【解】 (1) 待验假设 H 0 : μ = 1000 , H 1 : μ ≠ 1000 H_0: \mu=1000, H_1: \mu \neq 1000 H0:μ=1000,H1:μ=1000

选取检验统计量 T = X ˉ − 1000 S n ∼ t ( n − 1 ) T=\frac{\bar{X}-1000}{\frac{S}{\sqrt{n}}} \sim t(n-1) T=n SXˉ1000t(n1). 由 α = 0.05 ⇒ t α / 2 = t 0.025 ( 8 ) = 2.306 \alpha=0.05 \Rightarrow t_{\alpha / 2}=t_{0.025}(8)=2.306 α=0.05tα/2=t0.025(8)=2.306, 又由 x ˉ = 998 、 s = 30 \bar{x}=998 、 s=30 xˉ=998s=30, 可算得统计量观测值 t t t
t = x ˉ − 1000 30 / 9 = 998 − 1000 30 / 9 = − 0.2 t=\frac{\bar{x}-1000}{30 / \sqrt{9}}=\frac{998-1000}{30 / \sqrt{9}}=-0.2 t=30/9 xˉ1000=30/9 9981000=0.2
∣ t ∣ = 0.2 < t 0.025 ( 8 ) = 2.306 |t|=0.2<t_{0.025}(8)=2.306 t=0.2<t0.025(8)=2.306, 故可以认为平均每袋产品的净重为 1000   g 1000 \mathrm{~g} 1000 g

(2) 待验假设为 H 0 ′ : σ 2 ≤ 1 5 2 , H 1 ′ : σ 2 > 1 5 2 H_0^{\prime}: \sigma^2 \leq 15^2, H_1^{\prime}: \sigma^2>15^2 H0:σ2152,H1:σ2>152 。选取检验统计量 χ 2 = ( n − 1 ) S 2 1 5 2 ∼ χ 2 ( n − 1 ) \chi^2=\frac{(n-1) S^2}{15^2} \sim \chi^2(n-1) χ2=152(n1)S2χ2(n1). 由 α = 0.05 ⇒ χ 2 α ( n − 1 ) = t 0.05 ( 8 ) = 15.507 , χ 2 = ( 9 − 1 ) ⋅ 3 0 2 1 5 2 = 32 > 15.507 \alpha=0.05 \Rightarrow \chi^2 \alpha(n-1)=t_{0.05}(8)=15.507, \chi^2=\frac{(9-1) \cdot 30^2}{15^2}=32>15.507 α=0.05χ2α(n1)=t0.05(8)=15.507,χ2=152(91)302=32>15.507, 故拒绝 H 0 ′ H_0^{\prime} H0, 即可以认为 机器生产不正常.

  • 23
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 经导师精心指导并认可、获 98 分的毕业设计项目!【项目资源】:微信小程序。【项目说明】:聚焦计算机相关专业毕设及实战操练,可作课程设计与期末大作业,含全部源码,能直用于毕设,经严格调试,运行有保障!【项目服务】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值