GCD&LCM

Description 

Consider 2 integers a,b,and gcd(a,b)=n,lcm(a,b)=m.Now give you 2 integers n,m,there may exist multiple (a,b) meet requirements,Please tell me the pair which has the minimum sum.

Input 

The input consists of multiple test cases. Each contains 2 integers n,m.(0 < n ,m<=10^12)。

Output 

For each case,output 2 integer x,y.(x<=y).The pair which has the minimum sum.

3 60

12 15

 

题目链接

 

与这题的做法相同,甚至还是简化版

 

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
using namespace std;
typedef long long ll;
const ll INF=1e13;
ll N, M, p, q;      //gcd==N; lcm==M; gcd(pN, qN)==N, lcm(pN, qN)==M
ll little, large, ans_little, ans_large;
ll gcd(ll a, ll b)
{
    return b==0?a:gcd(b, a%b);
}
int main()
{
    while(scanf("%lld%lld", &N, &M)!=EOF)
    {
        if(M%N) continue;
        little=large=ans_large=ans_little=INF;
        M/=N;
        for(ll i=1; i*i<=M; i++)
        {
            if(M%i==0 && gcd(i, M/i)==1)
            {
                ans_little=i;
                ans_large=M/i;
            }
        }
        printf("%lld %lld\n", ans_little*N, ans_large*N);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值