Description
Consider 2 integers a,b,and gcd(a,b)=n,lcm(a,b)=m.Now give you 2 integers n,m,there may exist multiple (a,b) meet requirements,Please tell me the pair which has the minimum sum.
Input
The input consists of multiple test cases. Each contains 2 integers n,m.(0 < n ,m<=10^12)。
Output
For each case,output 2 integer x,y.(x<=y).The pair which has the minimum sum.
3 60
12 15
题目链接
与这题的做法相同,甚至还是简化版
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
using namespace std;
typedef long long ll;
const ll INF=1e13;
ll N, M, p, q; //gcd==N; lcm==M; gcd(pN, qN)==N, lcm(pN, qN)==M
ll little, large, ans_little, ans_large;
ll gcd(ll a, ll b)
{
return b==0?a:gcd(b, a%b);
}
int main()
{
while(scanf("%lld%lld", &N, &M)!=EOF)
{
if(M%N) continue;
little=large=ans_large=ans_little=INF;
M/=N;
for(ll i=1; i*i<=M; i++)
{
if(M%i==0 && gcd(i, M/i)==1)
{
ans_little=i;
ans_large=M/i;
}
}
printf("%lld %lld\n", ans_little*N, ans_large*N);
}
return 0;
}