向量空间
1. 向量空间和子空间
1.1 向量空间
通俗来讲,向量空间是一些向量的集合,这些向量满足以下特征
- 包括零向量
- 对加法封闭
也就是 v1+v2仍然属于这个空间
- 对数乘封闭
也就是 c*v1仍然属于这个空间
1.2 子空间
子空间是向量空间的一部分,也满足向量空间的三个特征,小于等于向量空间。
2. 线性无关
2.1 线性无关与线性方程组的关系
这也是线性无关的定义式,如果AX = 0有除了零向量以外的非平凡解,那么A中各个向量就是线性相关的
2.2 线性无关与零空间的关系
如果A中的向量是线性无关的,那么A的零空间只有零向量
2.3 线性无关与秩的关系
A的秩代表着A中线性无关的向量的个数
3.基和维度
A中线性无关的向量个数=空间的维度=空间的基的个数
4. 四个子空间
4.1 列空间和零空间
4.1.1 列空间
列空间就是A的列向量所组成的空间,如果方程AX=b有解,那么b就是属于列空间。列空间的定义是一种显示的定义。列空间的意义是,通过对A的列向量进行重新的线性组合能够得到什么向量。
4.1.2 零空间
零空间就是满足AX=0的解集的向量。零空间是一种隐式定义的子空间,因为必须与矩阵A相乘来判断是否属于零空间。零空间的意义是通过怎么样的线性组合,能够使得A中的向量线性相关
4.1.3 列空间和零空间的维度关系
矩阵的秩r = 列空间的维度
n - r = 零空间的维度
4.1.4 求列空间和零空间中的基向量
列空间的基向量求解方法,就是把矩阵A化为阶梯式,依照主元所在的列,从A中找到对应的列向量,就是基向量
零空间的基向量的求解方法,就是解Ax = 0,利用基础解系,找到相应的特解,就是零空间的基向量
4.2 行空间和左零空间
4.2.1 行空间
行空间其实就是A^T的列空间,也就是矩阵A的行所组成的向量空间。
4.2.2 左零空间
左零空间其实就是A^T的零空间。
A
T
∗
x
=
0
A^T*x = 0
AT∗x=0
如果把两边转置
x
T
∗
A
=
0
x^T*A = 0
xT∗A=0
因为x^T在左边,所以得名左零空间
4.2.3 左零空间和行空间的维度关系
矩阵的秩 = 行空间的维度
m - r = 左零空间的维度
4.2.4 左零空间和行空间的基求解
行空间的基就是获得到了阶梯式以后,根据主元所在的位置,在阶梯式中寻找对应的行作为基向量。也可以在A中寻找对应的行作为基向量。因为在阶梯式化简过程中,只涉及行变换,行变换不影响行空间的基向量。
左零空间基向量的求解方法,化简前,右边加一个单位矩阵
E
∗
{
A
I
}
=
{
R
E
}
E*\left\{ \begin{matrix} A&I \end{matrix}\right\}=\left\{ \begin{matrix} R&E \end{matrix}\right\}
E∗{AI}={RE}
对矩阵A做阶梯式化简,找阶梯矩阵R中零行,对应的E中的相应行就是左零空间的基向量。
因为 E*A = 0,等价于x^T*A = 0,所以E中相应的行向量,就是左零空间中的x
4.3 行空间和零空间的关系
A ∗ X = 0 A*X = 0 A∗X=0
从上式中,根据矩阵乘法,前行乘后列为0,后列属于零空间,而前行属于行空间,乘积为0说明二者正交,说明行空间与零空间是正交补的关系,两个子空间正交
4.4 列空间和左零空间的关系
因为二者与行空间还有左零空间是A转置前后对应的子空间,所以二者也满足乘积为0的关系,列空间和左零空间是正交补关系,两个子空间正交。
5.矩阵空间
矩阵空间是由矩阵构成的空间,比如3x3矩阵有九个数字,就可以分解为9个子矩阵的和,这些子矩阵叫做矩阵空间
6.坐标系与基变换
6.1 坐标系的分类
6.1.1 基于Rn的坐标系
坐标系是向量表示的基础,一般来说向量都是坐标系的基向量的线性组合,比如,我们通常所说的向量
{
c
1
c
2
c
3
}
=
c
1
∗
{
1
0
0
}
+
c
2
∗
{
0
1
0
}
+
c
3
∗
{
0
0
1
}
\left\{\begin{matrix}c1\\c2\\c3\end{matrix}\right\}=c1*\left\{\begin{matrix}1\\0\\0\end{matrix}\right\}+c2*\left\{\begin{matrix}0\\1\\0\end{matrix}\right\}+c3*\left\{\begin{matrix}0\\0\\1\end{matrix}\right\}
⎩⎨⎧c1c2c3⎭⎬⎫=c1∗⎩⎨⎧100⎭⎬⎫+c2∗⎩⎨⎧010⎭⎬⎫+c3∗⎩⎨⎧001⎭⎬⎫
基于Rn的坐标系,实际上就是以向量空间中的单位向量为基组成的向量,如上面的公式写的那样
6.1.2 基于基向量β的坐标系
但是有的时候,空间中坐标系并不以最常见的单位向量为基向量,可能以其他向量为基向量,这种使用其他向量做基向量的坐标系就叫做基于基向量β的坐标系,线性组合的系数,就是向量的大小,比如
{
1
3
5
}
=
1
∗
{
1
2
3
}
+
2
∗
{
0
2
2
}
+
3
∗
{
0
−
1
0
}
\left\{\begin{matrix}1\\3\\5\end{matrix}\right\}=1*\left\{\begin{matrix}1\\2\\3\end{matrix}\right\}+2*\left\{\begin{matrix}0\\2\\2\end{matrix}\right\}+3*\left\{\begin{matrix}0\\-1\\0\end{matrix}\right\}
⎩⎨⎧135⎭⎬⎫=1∗⎩⎨⎧123⎭⎬⎫+2∗⎩⎨⎧022⎭⎬⎫+3∗⎩⎨⎧0−10⎭⎬⎫
得到的向量为
[
X
]
β
=
{
1
2
3
}
[X]_β=\left\{\begin{matrix}1\\2\\3\end{matrix}\right\}
[X]β=⎩⎨⎧123⎭⎬⎫
其原理基于Rn的坐标系的向量为
X
=
{
1
3
5
}
X = \left\{\begin{matrix}1\\3\\5\end{matrix}\right\}
X=⎩⎨⎧135⎭⎬⎫
这种通过更改基向量使得向量坐标发生变换的情况叫做基变换
6.2 坐标系之间的映射关系
坐标系之间的映射是通过映射矩阵实现的,具有关系
X
=
A
∗
[
X
]
β
X = A*[X]_β
X=A∗[X]β
矩阵A是基于β的坐标空间的基向量,比如
{
1
3
5
}
=
1
∗
{
1
2
3
}
+
2
∗
{
0
2
2
}
+
3
∗
{
0
−
1
0
}
\left\{\begin{matrix}1\\3\\5\end{matrix}\right\}=1*\left\{\begin{matrix}1\\2\\3\end{matrix}\right\}+2*\left\{\begin{matrix}0\\2\\2\end{matrix}\right\}+3*\left\{\begin{matrix}0\\-1\\0\end{matrix}\right\}
⎩⎨⎧135⎭⎬⎫=1∗⎩⎨⎧123⎭⎬⎫+2∗⎩⎨⎧022⎭⎬⎫+3∗⎩⎨⎧0−10⎭⎬⎫
{ 1 3 5 } = { 1 0 0 2 2 − 1 3 2 0 } ∗ { 1 2 3 } \left\{\begin{matrix}1\\3\\5\end{matrix}\right\}=\left\{\begin{matrix}1 &0& 0\\2&2&-1\\3&2&0\end{matrix}\right\}*\left\{\begin{matrix}1\\2\\3\end{matrix}\right\} ⎩⎨⎧135⎭⎬⎫=⎩⎨⎧1230220−10⎭⎬⎫∗⎩⎨⎧123⎭⎬⎫
6.3 同构关系
不管向量是在基于Rn的坐标系中,还是在基于基向量β的坐标系中,其含义是一致的,相应的运算也是对应一致的,这种同一个向量的不同坐标系表示形式,构成了同构关系
6.4 基的变换
除了Rn坐标系和基向量β坐标系之间的变换,还存在其他基向量的坐标系变换,比如基向量γ和基向量β坐标系之间的变换
有坐标系β中的基向量
β 1 = { 1 2 3 } β_1=\left\{\begin{matrix}1\\2\\3\end{matrix}\right\} β1=⎩⎨⎧123⎭⎬⎫
β 2 = { 0 2 2 } β_2=\left\{\begin{matrix}0\\2\\2\end{matrix}\right\} β2=⎩⎨⎧022⎭⎬⎫
β
3
=
{
0
−
1
0
}
β_3=\left\{\begin{matrix}0\\-1\\0\end{matrix}\right\}
β3=⎩⎨⎧0−10⎭⎬⎫
同时有坐标系γ中的基向量
γ 1 = { 1 1 0 } γ_1 = \left\{\begin{matrix}1\\1\\0\end{matrix}\right\} γ1=⎩⎨⎧110⎭⎬⎫
γ 2 = { 0 1 1 } γ_2 = \left\{\begin{matrix}0\\1\\1\end{matrix}\right\} γ2=⎩⎨⎧011⎭⎬⎫
γ 3 = { 1 0 1 } γ_3 = \left\{\begin{matrix}1\\0\\1\end{matrix}\right\} γ3=⎩⎨⎧101⎭⎬⎫
二者之间具有关系
β 1 = 0 ∗ γ 1 + 2 ∗ γ 2 + 1 ∗ γ 3 β_1 = 0*γ_1+2*γ_2+1*γ_3 β1=0∗γ1+2∗γ2+1∗γ3
β 2 = 0 ∗ γ 1 + 2 ∗ γ 2 + 0 ∗ γ 3 β_2 = 0*γ_1+2*γ_2+0*γ_3 β2=0∗γ1+2∗γ2+0∗γ3
β 3 = − 1 2 ∗ γ 1 − 1 2 ∗ γ 2 + 1 2 ∗ γ 3 β_3 = -\frac{1}{2}*γ_1-\frac{1}{2}*γ_2+\frac{1}{2}*γ_3 β3=−21∗γ1−21∗γ2+21∗γ3
我们有如下公式
- X = Pc*[X]C
- X = PB*[X]B
- XB = PCB*[X]C
- XC=PBC*[X]B
其中PB是基向量B的坐标,而PBC是一个基向量B等于几个基向量C而构成的映射关系,比如本例中
[ X ] β = { 0 2 1 0 2 0 − 1 2 − 1 2 1 2 } ∗ [ X ] γ [X]_β = \left\{\begin{matrix}0 &2& 1\\0&2&0\\-\frac{1}{2}&-\frac{1}{2}&\frac{1}{2}\end{matrix}\right\}*[X]_γ [X]β=⎩⎨⎧00−2122−211021⎭⎬⎫∗[X]γ
这四个公式构成了不同基向量坐标系和Rn坐标系之间的基变换关系