【线性代数及其应用】03 - 向量空间

向量空间

1. 向量空间和子空间

1.1 向量空间

  通俗来讲,向量空间是一些向量的集合,这些向量满足以下特征

  • 包括零向量
  • 对加法封闭

  也就是 v1+v2仍然属于这个空间

  • 对数乘封闭

  也就是 c*v1仍然属于这个空间

1.2 子空间

  子空间是向量空间的一部分,也满足向量空间的三个特征,小于等于向量空间。

2. 线性无关

2.1 线性无关与线性方程组的关系

  这也是线性无关的定义式,如果AX = 0有除了零向量以外的非平凡解,那么A中各个向量就是线性相关的

2.2 线性无关与零空间的关系

  如果A中的向量是线性无关的,那么A的零空间只有零向量

2.3 线性无关与秩的关系

  A的秩代表着A中线性无关的向量的个数

3.基和维度

  A中线性无关的向量个数=空间的维度=空间的基的个数

4. 四个子空间

4.1 列空间和零空间

4.1.1 列空间

  列空间就是A的列向量所组成的空间,如果方程AX=b有解,那么b就是属于列空间。列空间的定义是一种显示的定义。列空间的意义是,通过对A的列向量进行重新的线性组合能够得到什么向量。

4.1.2 零空间

  零空间就是满足AX=0的解集的向量。零空间是一种隐式定义的子空间,因为必须与矩阵A相乘来判断是否属于零空间。零空间的意义是通过怎么样的线性组合,能够使得A中的向量线性相关

4.1.3 列空间和零空间的维度关系

矩阵的秩r = 列空间的维度
n - r = 零空间的维度

4.1.4 求列空间和零空间中的基向量

  列空间的基向量求解方法,就是把矩阵A化为阶梯式,依照主元所在的列,从A中找到对应的列向量,就是基向量
  零空间的基向量的求解方法,就是解Ax = 0,利用基础解系,找到相应的特解,就是零空间的基向量

4.2 行空间和左零空间

4.2.1 行空间

  行空间其实就是A^T的列空间,也就是矩阵A的行所组成的向量空间。

4.2.2 左零空间

  左零空间其实就是A^T的零空间。
A T ∗ x = 0 A^T*x = 0 ATx=0
  如果把两边转置
x T ∗ A = 0 x^T*A = 0 xTA=0
  因为x^T在左边,所以得名左零空间

4.2.3 左零空间和行空间的维度关系

矩阵的秩 = 行空间的维度
m - r = 左零空间的维度

4.2.4 左零空间和行空间的基求解

  行空间的基就是获得到了阶梯式以后,根据主元所在的位置,在阶梯式中寻找对应的行作为基向量。也可以在A中寻找对应的行作为基向量。因为在阶梯式化简过程中,只涉及行变换,行变换不影响行空间的基向量。

  左零空间基向量的求解方法,化简前,右边加一个单位矩阵
E ∗ { A I } = { R E } E*\left\{ \begin{matrix} A&I \end{matrix}\right\}=\left\{ \begin{matrix} R&E \end{matrix}\right\} E{AI}={RE}
  对矩阵A做阶梯式化简,找阶梯矩阵R中零行,对应的E中的相应行就是左零空间的基向量。
因为 E*A = 0,等价于x^T*A = 0,所以E中相应的行向量,就是左零空间中的x

4.3 行空间和零空间的关系

A ∗ X = 0 A*X = 0 AX=0

  从上式中,根据矩阵乘法,前行乘后列为0,后列属于零空间,而前行属于行空间,乘积为0说明二者正交,说明行空间与零空间是正交补的关系,两个子空间正交

4.4 列空间和左零空间的关系

  因为二者与行空间还有左零空间是A转置前后对应的子空间,所以二者也满足乘积为0的关系,列空间和左零空间是正交补关系,两个子空间正交。

5.矩阵空间

  矩阵空间是由矩阵构成的空间,比如3x3矩阵有九个数字,就可以分解为9个子矩阵的和,这些子矩阵叫做矩阵空间

6.坐标系与基变换

6.1 坐标系的分类

6.1.1 基于Rn的坐标系

  坐标系是向量表示的基础,一般来说向量都是坐标系的基向量的线性组合,比如,我们通常所说的向量
{ c 1 c 2 c 3 } = c 1 ∗ { 1 0 0 } + c 2 ∗ { 0 1 0 } + c 3 ∗ { 0 0 1 } \left\{\begin{matrix}c1\\c2\\c3\end{matrix}\right\}=c1*\left\{\begin{matrix}1\\0\\0\end{matrix}\right\}+c2*\left\{\begin{matrix}0\\1\\0\end{matrix}\right\}+c3*\left\{\begin{matrix}0\\0\\1\end{matrix}\right\} c1c2c3=c1100+c2010+c3001

  基于Rn的坐标系,实际上就是以向量空间中的单位向量为基组成的向量,如上面的公式写的那样

6.1.2 基于基向量β的坐标系

  但是有的时候,空间中坐标系并不以最常见的单位向量为基向量,可能以其他向量为基向量,这种使用其他向量做基向量的坐标系就叫做基于基向量β的坐标系,线性组合的系数,就是向量的大小,比如
{ 1 3 5 } = 1 ∗ { 1 2 3 } + 2 ∗ { 0 2 2 } + 3 ∗ { 0 − 1 0 } \left\{\begin{matrix}1\\3\\5\end{matrix}\right\}=1*\left\{\begin{matrix}1\\2\\3\end{matrix}\right\}+2*\left\{\begin{matrix}0\\2\\2\end{matrix}\right\}+3*\left\{\begin{matrix}0\\-1\\0\end{matrix}\right\} 135=1123+2022+3010
  得到的向量为
[ X ] β = { 1 2 3 } [X]_β=\left\{\begin{matrix}1\\2\\3\end{matrix}\right\} [X]β=123

  其原理基于Rn的坐标系的向量为
X = { 1 3 5 } X = \left\{\begin{matrix}1\\3\\5\end{matrix}\right\} X=135
  这种通过更改基向量使得向量坐标发生变换的情况叫做基变换

6.2 坐标系之间的映射关系

  坐标系之间的映射是通过映射矩阵实现的,具有关系
X = A ∗ [ X ] β X = A*[X]_β X=A[X]β
  矩阵A是基于β的坐标空间的基向量,比如
{ 1 3 5 } = 1 ∗ { 1 2 3 } + 2 ∗ { 0 2 2 } + 3 ∗ { 0 − 1 0 } \left\{\begin{matrix}1\\3\\5\end{matrix}\right\}=1*\left\{\begin{matrix}1\\2\\3\end{matrix}\right\}+2*\left\{\begin{matrix}0\\2\\2\end{matrix}\right\}+3*\left\{\begin{matrix}0\\-1\\0\end{matrix}\right\} 135=1123+2022+3010

{ 1 3 5 } = { 1 0 0 2 2 − 1 3 2 0 } ∗ { 1 2 3 } \left\{\begin{matrix}1\\3\\5\end{matrix}\right\}=\left\{\begin{matrix}1 &0& 0\\2&2&-1\\3&2&0\end{matrix}\right\}*\left\{\begin{matrix}1\\2\\3\end{matrix}\right\} 135=123022010123

6.3 同构关系

  不管向量是在基于Rn的坐标系中,还是在基于基向量β的坐标系中,其含义是一致的,相应的运算也是对应一致的,这种同一个向量的不同坐标系表示形式,构成了同构关系

6.4 基的变换

  除了Rn坐标系和基向量β坐标系之间的变换,还存在其他基向量的坐标系变换,比如基向量γ和基向量β坐标系之间的变换

  有坐标系β中的基向量

β 1 = { 1 2 3 } β_1=\left\{\begin{matrix}1\\2\\3\end{matrix}\right\} β1=123

β 2 = { 0 2 2 } β_2=\left\{\begin{matrix}0\\2\\2\end{matrix}\right\} β2=022

β 3 = { 0 − 1 0 } β_3=\left\{\begin{matrix}0\\-1\\0\end{matrix}\right\} β3=010
  同时有坐标系γ中的基向量

γ 1 = { 1 1 0 } γ_1 = \left\{\begin{matrix}1\\1\\0\end{matrix}\right\} γ1=110

γ 2 = { 0 1 1 } γ_2 = \left\{\begin{matrix}0\\1\\1\end{matrix}\right\} γ2=011

γ 3 = { 1 0 1 } γ_3 = \left\{\begin{matrix}1\\0\\1\end{matrix}\right\} γ3=101

  二者之间具有关系

β 1 = 0 ∗ γ 1 + 2 ∗ γ 2 + 1 ∗ γ 3 β_1 = 0*γ_1+2*γ_2+1*γ_3 β1=0γ1+2γ2+1γ3

β 2 = 0 ∗ γ 1 + 2 ∗ γ 2 + 0 ∗ γ 3 β_2 = 0*γ_1+2*γ_2+0*γ_3 β2=0γ1+2γ2+0γ3

β 3 = − 1 2 ∗ γ 1 − 1 2 ∗ γ 2 + 1 2 ∗ γ 3 β_3 = -\frac{1}{2}*γ_1-\frac{1}{2}*γ_2+\frac{1}{2}*γ_3 β3=21γ121γ2+21γ3

  我们有如下公式

  • X = Pc*[X]C
  • X = PB*[X]B
  • XB = PCB*[X]C
  • XC=PBC*[X]B

  其中PB是基向量B的坐标,而PBC是一个基向量B等于几个基向量C而构成的映射关系,比如本例中

[ X ] β = { 0 2 1 0 2 0 − 1 2 − 1 2 1 2 } ∗ [ X ] γ [X]_β = \left\{\begin{matrix}0 &2& 1\\0&2&0\\-\frac{1}{2}&-\frac{1}{2}&\frac{1}{2}\end{matrix}\right\}*[X]_γ [X]β=002122211021[X]γ

  这四个公式构成了不同基向量坐标系和Rn坐标系之间的基变换关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值