【现代信号处理】01 -概率论与随机过程回顾

概率论与随机过程回顾

文章目录

1. 统计模型的相关概念

1.1 统计实验(不确定性)

  我们认同不确定性的存在,是人类对自身无知的妥协 – 爱因斯坦

  重复进行随机实验

1.2 样本点

  是统计实验可能出现的所有结果

1.3 样本空间Ω

  所有样本点的集合

1.4 概率

  样本空间可以赋予的一些数值,是样本点在统计实验中出现的可能性的大小。

1.5.统计模型是先验的

   所有这一切都是先验的,也就是在使用概率论工具之前,他们就是存在的

2. 概率和统计的差异

2.1 联系

  共用了同一套符号,而对于处理思路,解决的问题等完全是风马牛不相及

2.2 差异

2.3.1 概率和统计问题的三要素
2.3.1.1 model-模型

  统计模型:统计模型包括了1中的所有内容,模型包括的问题如

  • 样本空间是什么
  • 样本点的概率是什么
2.3.1.2 data-数据

  数据是上帝造的,模型是人造的,二者有层级关系

  从数据得出模型的过程就是统计

2.3.1.3 decision-决策

  有了模型之后,可用模型来推断、预测、判别。

  使用模型做出决策的过程,叫概率。

  因此使用概率的时候,模型是已知的,因此是先验的

2.3.2 关系图

在这里插入图片描述

3. 样本空间的重要性

3.1 贝朗特悖论

  样本空间选择的正确性对于概率统计来说是非常重要的,比如我们以bertrand paradox(贝特朗悖论)来进行说明

  贝朗特悖论描述的是,给定了一个圆,里面有一个内接正三角形,在圆里面随机取一条弦,弦的长度比内接三角形变长长的概率是多少

在这里插入图片描述

3.1.1 解法一

  如果我们固定一个端点去找另外一个端点

在这里插入图片描述

  假设从A点出发去寻找另外一点端点,显然当另外一个端点在橙色标记圆弧段的时候成立,概率是

1 3 \frac{1}{3} 31

3.1.2 解法二

  我们也可以固定弦中点去选,假设点A是弦的中点,当弦A在三角形内切圆内的时候,显然经过中点A的弦会比正三角形边长长,这个概率等于内切圆和外接圆的面积比,也就是
1 4 \frac{1}{4} 41

在这里插入图片描述

3.1.3 解法三

在这里插入图片描述

  还是固定弦中点,这次比较的对象是半径,如果弦中点在半径的靠近圆心的一半,显然得到的弦长比三角形半径长。因此概率是

1 2 \frac{1}{2} 21

3.2 结论

  上面的所有结果都是对的,因为选点的基础是不一样的。也就是样本空间的选取不同。因此所有的决策都是基于模型在研究问题,模型不同得到的决策不同是很正常的事情,因为概率本来就是在模型的基础上去做的决策。

4.概率相关的概念

4.1 随机变量

  随机变量一点随机性都没有,是从样本空间映射到实数轴的一个确定性的函数。

  随机变量起到了样本空间量化的作用,把样本空间变成数。因为只有把问题变成了数,才能用数学工具进行处理。比如硬币正面朝上*硬币反面朝上是没有意义的

4.2 分布

   P(Z=x)的含义是,概率只能定义在样本空间的样本点上。

P ( Z = x ) = P ( w ∈ Ω ∣ Z ( w ) = x ) P(Z=x)=P({w\in\Omega|Z(w)=x}) P(Z=x)=P(wΩZ(w)=x)

  只有样本点在统计实验中是不确定的,从样本点之后的所有问题都不是随机的。

  概率是模型的一部分,是一个先验结果。

  概率的另外一个名字就是分布。分布对应的是随机变量,概率对应的是样本点,他们表达的都是同一个模型。不同的随机变量,不同的分布就代表了不同的统计实验和不同的可能性的大小。

4.3 连续与离散

  如果随机变量是离散的,意味着样本空间是可数的。可数就是与自然数的真子集一一对应。

w 1 , w 2 , w 3.... {w1,w2,w3....} w1,w2,w3....

   如果随机变量是连续的,意味着样本空间就是实数轴

  集合只有两种状态,要么可数,要么连续。

4.4 概率密度

4.4.1 概率的累加性

  概率的特性中,最重要的就是可加性。

  概率最重要的特性就是可加性。不确定性是可以加起来的。

  比如对于离散的情况,事件A发生的概率就是其子集Xk发生概率的求和

P ( A ) = ∑ x k ∈ A P ( Z = X k ) P(A)=\sum_{x_k\in A}P(Z=X_k) P(A)=xkAP(Z=Xk)

  而对于连续的情况,实际上就是累加符号变成了积分符号

P ( A ) = ∫ A f Z ( x ) d x P(A) = \int_A f_Z(x)dx P(A)=AfZ(x)dx

  其中这个f(x)函数可以与概率进行相关联,这个函数叫做概率密度。

4.4.2 概率与概率密度的区别

  连续分布函数的概率密度与离散的样本点的概率并不是一回事。原因在于,如果是连续的随机变量,某一点概率的取值一定是0。

f z ( x ) = P ( Z = x ) = 0 f_{z}(x) \cancel{=} P(Z=x)=0 fz(x)= P(Z=x)=0

4.4.3 概率与概率密度的联系

  概率密度与概率的关联在于,连续函数某一点的概率,近似等于某一点上一段的概率。这一段的概率,根据概率的定义,就是一个微积分。这个微积分又可以近似为f(x)*△x。一般来说,问题进行近似化研究会不严禁,但是离散和连续问题之间天然存在这样一个鸿沟。

P ( Z = x ) ≈ P ( x < Z < x + Δ x ) = ∫ x x + Δ x f z ( s ) d s ≈ f z ( x ) ∗ Δ x P(Z=x) \approx P(x<Z<x+\Delta x) \\ = \int_x^{x+\Delta x} f_z(s)ds \\ \approx f_z(x)*\Delta x P(Z=x)P(x<Z<x+Δx)=xx+Δxfz(s)dsfz(x)Δx

  密度和概率都是模型的一部分。

  密度的原函数叫做分布函数

F Z ( x ) = ∫ f Z ( s ) d s F_Z(x) = \int f_Z(s)ds FZ(x)=fZ(s)ds

5.几种典型的分布

5.1 离散的分布

5.1.1 伯努利模型(两点分布) Bernoalli

Z ∼ { x 1 x 2 P 1 − P } ( 0 ≤ P ≤ 1 ) Z \sim\begin{Bmatrix} x_1 & x_2 \\ P & 1-P \end{Bmatrix} \quad (0\leq P \leq 1) Z{x1Px21P}(0P1)

5.1.2 射击模型(二项分布) Binormal

  二项分布就是做了n次伯努利实验以后的分布

  问题描述:一共打了n枪,每一枪的概率都是p,打中k枪的概率是多少

Z ∼ B ( n , p ) P ( Z = k ) = { n k } ∗ P k ∗ ( 1 − P ) n − k Z \sim B(n,p) \\ P(Z=k)=\begin{Bmatrix} n \\ k \end{Bmatrix}*P^k*(1-P)^{n-k} ZB(n,p)P(Z=k)={nk}Pk(1P)nk

5.1.3 泊松分布 Poisson
5.1.3.1 泊松分布与二项分布的关系

P ( Z = k ) = λ k k ! e x p ( − λ ) k = 0 , 1 , 2... P(Z=k)= \frac{\lambda^k}{k!}exp(-\lambda) \quad\quad k=0,1,2... P(Z=k)=k!λkexp(λ)k=0,1,2...

   泊松分布其实与二项分布是一脉相承的。

  我们让二项分布的P趋近于0,也就是射中率接近0,为了补偿,让实验次数n趋近于无穷大。同时让np是个常数

P ( Z = k ) = { n k } ∗ P k ∗ ( 1 − P ) n − k P → 0 , n → ∞ , n ∗ P = λ P(Z=k)=\begin{Bmatrix} n \\ k \end{Bmatrix}*P^k*(1-P)^{n-k} \quad\quad P\rightarrow 0,n\rightarrow \infty,n*P = \lambda P(Z=k)={nk}Pk(1P)nkP0,n,nP=λ

5.1.3.2 公式推导

  先把公式拆分为四个部分
{ n k } ∗ P k ∗ ( 1 − P ) n − k = n ! k ! ∗ ( n − k ) ! ∗ ( λ n ) k ∗ ( 1 − λ n ) n − k = ( λ k k ! ) ∗ ( n ∗ ( n − 1 ) ∗ . . . ∗ ( n − k + 1 ) n k ) ∗ ( 1 − λ n ) − k ∗ ( 1 − λ n ) n \begin{Bmatrix} n \\ k \end{Bmatrix}*P^k*(1-P)^{n-k} \\ = \frac{n!}{k!*(n-k)!}*(\frac{\lambda}{n})^k*(1-\frac{\lambda}{n})^{n-k} \\ = (\frac{\lambda^k}{k!})*(\frac{n*(n-1)*...*(n-k+1)}{n^k})*(1-\frac{\lambda}{n})^{-k}*(1-\frac{\lambda}{n})^n {nk}Pk(1P)nk=k!(nk)!n!(nλ)k(1nλ)nk=(k!λk)(nkn(n1)...(nk+1))(1nλ)k(1nλ)n
  第一项保留

  对于第二项,上面最高项是nk,下面的最高项也是nk,因此第二项极限是1

  第三项中,n是无穷大,λ和k是常数,因此其极限值也是1

  第四项用等价无穷小

lim ⁡ n → ∞ ( 1 − λ n ) n = e n ∗ l n ( 1 − λ n ) = e n ∗ ( − λ n ) = e − λ \lim_{n\rightarrow \infty}(1-\frac{\lambda}{n})^n \\ = e^{n*ln(1-\frac{\lambda}{n})} \\ = e^{n*(-\frac{\lambda}{n})} = e^{-\lambda} nlim(1nλ)n=enln(1nλ)=en(nλ)=eλ

  最后就得到了泊松分布

( λ k k ! ) ∗ ( n ∗ ( n − 1 ) ∗ . . . ∗ ( n − k + 1 ) n k ) ∗ ( 1 − λ n ) − k ∗ ( 1 − λ n ) n = λ k k ! e x p ( − λ ) (\frac{\lambda^k}{k!})*(\frac{n*(n-1)*...*(n-k+1)}{n^k})*(1-\frac{\lambda}{n})^{-k}*(1-\frac{\lambda}{n})^n = \frac{\lambda^k}{k!}exp(-\lambda) (k!λk)(nkn(n1)...(nk+1))(1nλ)k(1nλ)n=k!λkexp(λ)

5.1.3.3 泊松分布的价值

  泊松分布是小概率事件的近似计算,是稀有事件的概率的统计模型

5.2 连续的分布

5.2.1 均匀分布 Uniform

  如果在[a,b]区间分布是均匀的,那么在这个区间任意一点的概率都是相同的

  分布函数如下

Z ∼ U ( a , b ) f z ( x ) = 1 b − a ∗ I [ a , b ] ( x ) Z \sim U(a,b) f_z(x) = \frac{1}{b-a}*I_{[a,b]}(x) ZU(a,b)fz(x)=ba1I[a,b](x)

  其中这个I[a,b](x)是在[a,b]区间取值的意思。数值在集合中就取1,不在集合中就取0,具体描述如下

I A ( x ) = { 1 x ∈ A 0 x ∉ A I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x\notin A \end{cases} IA(x)={10xAx/A

5.2.2 指数分布 Exponential
5.2.2.1 指数分布的数学表示

Z ∼ E x p ( λ ) f z ( x ) = λ ∗ e x p ( − λ x ) ∗ I [ 0 , k ] ( x ) Z \sim Exp(\lambda) \\ f_z(x) = \lambda*exp(-\lambda x)*I_{[0,k]}(x) ZExp(λ)fz(x)=λexp(λx)I[0,k](x)
  指数分布只在正半轴分布的

5.2.2.2 指数分布的意义

  指数分布刻画的是一种等待,等待某个时刻的到来,或者等待某个人的到来

5.2.2.3 指数分布与几何分布 Geometric

  连续分布的指数分布与离散分布的几何分布具有对应关系,这些先说一下什么是几何分布。几何分布与二项分布是非常相似的,但是并不是研究打中几枪的概率,而是从打枪开始,到第一次打中,需要几枪

P ( Z = k ) = P ( 1 − P ) K − 1 P(Z=k) = P(1-P)^{K-1} P(Z=k)=P(1P)K1

  几何分布意味着前面的(k-1)次都是没打中的

  几何分布是指数分布是连续版本。为什么这么说呢,我们把几何分布变一下样子,发现几何分布也是个指数的样子,因此指数分布的意义其实就与几何分布近似,描述的是一个等待xx事情发生的事件

P ( Z = k ) = P ( 1 − P ) K − 1 = P 1 − P ∗ ( 1 − P ) k P(Z=k) = P(1-P)^{K-1} = \frac{P}{1-P}*(1-P)^k P(Z=k)=P(1P)K1=1PP(1P)k

5.2.2.4 指数分布的性质

  指数分布的重要特性就是无记忆性(Memoryless)

P ( Z > x + y ∣ Z > x ) = P ( Z > y ) P(Z>x+y|Z>x) = P(Z>y) P(Z>x+yZ>x)=P(Z>y)

  对这个性质的描述就是:分布已经大于一个值了,然后继续大于一个新值的概率,与过往条件没有关系

  我们可以证明一下这个性质

P ( Z > x + y ∣ Z > x ) = P ( Z > x + y , Z > x ) P ( Z > x ) = P ( Z > x + y ) P ( Z > x ) = ∫ x + y ∞ λ e x p ( − λ s ) d s ∫ x ∞ λ e x p ( − λ s ) d s = e x p ( − λ ( x + y ) ) e x p ( − λ x ) = e x p ( − λ y ) = P ( Z > y ) P(Z>x+y|Z>x) = \frac{P(Z>x+y,Z>x)}{P(Z>x)} \\ \\ = \frac{P(Z>x+y)}{P(Z>x)} = \frac{\int_{x+y}^{\infty}\lambda exp(-\lambda s)ds}{\int_{x}^{\infty}\lambda exp(-\lambda s )ds} \\ \\ = \frac{exp(-\lambda(x+y))}{exp(-\lambda x)} = exp(-\lambda y) = P(Z>y) P(Z>x+yZ>x)=P(Z>x)P(Z>x+y,Z>x)=P(Z>x)P(Z>x+y)=xλexp(λs)dsx+yλexp(λs)ds=exp(λx)exp(λ(x+y))=exp(λy)=P(Z>y)

5.2.2.5 指数分布的举例

  比如人们常常用指数分布描述器件的寿命,一个灯泡已经使用了100个小时,然后这个灯泡能够使用到102小时的概率,和一个灯泡从0使用到2小时的概率是相同的

  听起来非常怪异,事实上,器件的故障率与时间的关系服从澡盆模型,盆底这一部分完全符合无记忆性。

在这里插入图片描述

5.2.3 高斯分布 Gaussian
5.2.3.1 一维高斯分布数学表示

f Z ( x ) = 1 2 π ∗ σ ∗ e x p ( − ( x − u ) 2 2 σ 2 ) x ∈ R f_Z(x) = \frac{1}{\sqrt{2\pi}*\sigma}*exp(-\frac{(x-u)^2}{2 \sigma^2}) \quad\quad x\in R fZ(x)=2π σ1exp(2σ2(xu)2)xR

  高斯分布是在实数轴分布的

5.2.3.2 一维高斯分布几何表示

在这里插入图片描述

  高斯分布是一条钟形曲线。其形状是通过均值u和标准差σ来表征的。u代表的是中心的位置,σ代表的是图形胖瘦,σ小就瘦,σ大就胖。

  高斯分布还有多维的

5.2.3.2 高斯分布与中心极限定理

  如果Z1…Zn都是独立同分布的,并且进行了归一化(均值为0,方差为1),那么把他们加一起,除根号n,就会呈现高斯分布

Z 1 , Z 2 . . . . , Z n E ( Z k ) = 0 , V a r ( E k ) = 1 Z_1,Z_2....,Z_n \quad\quad E(Z_k)=0,Var(E_k)=1 Z1,Z2....,ZnE(Zk)=0,Var(Ek)=1

lim ⁡ n → ∞ Z 1 + . . . + Z k n → N ( 0 , 1 ) \lim _{n \rightarrow \infty}\frac{Z_1+...+Z_k}{\sqrt n} \rightarrow N(0,1) nlimn Z1+...+ZkN(0,1)

  中心极限定理意味着即使数据分布不是正态的,从中抽取的样本均值的分布也是正态的

5.2.3.3 高斯分布的重要性

  高斯分布的重要性在于其普适性,很多随机现象都是符合高斯分布的。就比如描述一组原子的运动,宏观参数可以选择温度进行描述,高斯就是随机变量的一种宏观描述。

6. 对随机变量的描述

6.1 随机变量的均值

6.1.1 均值的数学表示

  一个随机变量的均值,是对随机变量所有可能取值进行加权求和

  • 离散的表示

E ( Z ) = ∑ k X k ∗ P ( Z = X k ) E(Z) = \sum _k X_k *P(Z=X_k) E(Z)=kXkP(Z=Xk)

  • 连续的表示

E ( Z ) = ∫ R x ∗ f z ( x ) d x E(Z) = \int _R x *f_z(x)dx E(Z)=Rxfz(x)dx

6.1.2 均值的线性性质
6.1.2.1 数学表示

   均值最重要的性质是线性性质

  若干个随机变量的和的均值,等于若干个随机变量均值的和。这个性质普遍存在,与变量是否独立,是否相关没有关系。

E ( Z ) = E ( Z 1 + Z 2 + . . . + Z N ) = E ( Z 1 ) + . . . + E ( Z N ) E(Z) = E(Z_1+Z_2+...+Z_N) = E(Z_1)+...+E(Z_N) E(Z)=E(Z1+Z2+...+ZN)=E(Z1)+...+E(ZN)

6.1.2.1 线性性质的应用–匹配问题

  下面举一个经典的例子来描述线性性质,也就是匹配问题。

其典型描述是:有n个人,有n顶帽子,他们摘下帽子参加活动,活动结束后,每一个人从桌子上随机抓起一顶帽子,有多少人戴对帽子了

  假设Z是匹配上了的帽子数量,求z的分布其实是很麻烦的,因为前一个人选择的正确与否,会显著影响后面人的选择,但是求Z的均值是比较简单的。

  这里我们要注意一个问题,复杂的均值一般不用定义求,因为如果对分布函数已经了解的很透彻了,其实就用不着均值了。就是因为分布函数太复杂,想简单点,才会引入均值

  这里我们引入辅助变量Zk,如果一个人戴对了帽子就取1,戴错了帽子就取0。

Z k = { 1 帽 子 戴 对 了 0 帽 子 戴 错 了 k = 0 , 1 , 2... N Z_k = \begin{cases} 1 & 帽子戴对了 \\ 0 & 帽子戴错了 \end{cases} \quad\quad k = 0,1,2...N Zk={10k=0,1,2...N

  这样就可以利用线性性质进行解耦了,不需要考虑前后之间的影响了。我们就可以把n个人戴对帽子的问题简化为单个人戴对帽子的问题。相当于戴对了帽子就对均值有贡献,戴错了就没有贡献

E ( Z ) = E ( Z 1 + Z 2 + . . . + Z N ) = E ( Z 1 ) + . . . + E ( Z N ) E(Z) = E(Z_1+Z_2+...+Z_N) = E(Z_1)+...+E(Z_N) E(Z)=E(Z1+Z2+...+ZN)=E(Z1)+...+E(ZN)

  而不考虑其他人,只考虑一个人戴对了帽子的概率是

P ( Z k = 1 ) = ( N − 1 ) ! N ! = 1 N P ( Z k = 0 ) = 1 − 1 N P(Z_k=1) = \frac{(N-1)!}{N!} = \frac{1}{N} \\ P(Z_k=0) = 1- \frac{1}{N} P(Zk=1)=N!(N1)!=N1P(Zk=0)=1N1

  这个时候可以计算均值了

E ( Z k ) = 1 ∗ P ( Z k = 1 ) + 0 ∗ P ( Z k = 0 ) = 1 N E(Z_k) = 1*P(Z_k=1)+0*P(Z_k=0) = \frac{1}{N} E(Zk)=1P(Zk=1)+0P(Zk=0)=N1

6.1.3 均值的物理含义
6.1.3.1 重心

  均值的一种含义是重心。重心就是质量在空间的分布的均值。

∫ x ∗ m ( x ) d x ∫ x d x \frac{\int x*m(x)dx}{\int xdx} xdxxm(x)dx

在这里插入图片描述

  物理学上重心的定义做了归一化。但是概率上不用做。因为概率密度函数的积分本来就等于1

E ( Z ) = ∫ R x ∗ f z ( x ) d x ∫ R f z ( x ) d x = ∫ R x ∗ f z ( x ) d x 1 E(Z) = \frac{\int _R x *f_z(x)dx}{\int _R f_z(x)dx} = \frac{\int _R x *f_z(x)dx}{1} E(Z)=Rfz(x)dxRxfz(x)dx=1Rxfz(x)dx

  因此均值可以看做是概率分布的重心

6.1.3.2 距离

  均值的另外一重含义是距离。

  我们让一个数字去逼近随机变量,找到一个距离随机变量最近的数字。

  这其实是让数字去逼近函数,为了描述这个数字,我们就得找到一个合适的距离去定量,我们选择均方距离

  • 均方距离

E [ ( Z − Y ) 2 ] M e a n S q u a r e E[(Z-Y)^2] \quad\quad Mean \quad Square E[(ZY)2]MeanSquare

  等价于求均方距离导数为0的点

Z ← a = > E [ ( Z − a ) 2 ] = > m i n E ( Z − a ) 2 = > d d a E ( Z − a ) 2 = 0 Z \leftarrow a => E[(Z-a)^2] => min E(Z-a)^2 => \frac{d}{da}E(Z-a)^2=0 Za=>E[(Za)2]=>minE(Za)2=>dadE(Za)2=0
  这里需要注意一下,期望是求积分,求导是求微分,积分微分交换顺序有条件,这里就不检查了,一般是满足的。

d d a E ( Z − a ) 2 = 0 E ( d d a ( Z − a ) 2 ) = 0 E ( Z − a ) = 0 a = E ( Z ) \frac{d}{da}E(Z-a)^2 = 0 \\ E(\frac{d}{da}(Z-a)^2) =0 \\ E(Z-a) = 0 \\ a = E(Z) dadE(Za)2=0E(dad(Za)2)=0E(Za)=0a=E(Z)

  这个a就是均值。说明均值就是在均方距离下与随机变量最接近的数字。

  均值相对于分布来说,简单太多,是对随机变量最好的代言。

6.2 方差

  在6.1.3.2求最接近随机变量的数字的时候,我们注意到,其实方差就是与随机变量最近的距离

  方差定义

V a r ( Z ) = E [ ( Z − E ( Z ) ) 2 ] Var(Z) =E[(Z- E(Z))^2] Var(Z)=E[(ZE(Z))2]

6.3 方差、均值与分布的关系

  从距离这个角度来看,方差和均值是可以完全融合在一起看的。均值是离随机变量最近的数字,方差就是离随机变量最近的距离。均值代表的是随机变量平均的位置,方差代表的是随机变量散开的情况

  均值和方差相比分布,在描述概率的准确性上损失了很多,但是在复杂度上得到了很大的收益。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值