数学板块学习之欧几里得与拓展欧几里得

更新ing

欧几里得

欧几里得算法: 又叫辗转相除法, 用于计算两个数的最大公约数, 在算最大公约数, 以及扩展欧几里得算法中都会用到

gcd知识点:
gcd(a,b) = gcd(a,b-a) = gcd(b,b-a)
求最小lcm即为求最大gcd

int gcd(int a,int b){		//最大公约数
    return b == 0? a : gcd(b,a%b);
}

int lcm(int a,int b)  //最小公倍数
{
    return a/gcd(a,b)*b;    //防止溢出
}

扩展欧几里得

拓展欧几里得 求的是ax + by = gcd(a, b) 的值

int exgcd(int a,int b,int& x,int& y){
    if(b == 0){
        x = 1;
        y = 0;
        return a;
    }
    else{
        int d = exgcd(b,a%b,y,x);
        y -= x*(a/b);
        return d;
    }
}

拓展欧几里得的应用

  1. 求方程ax + by = c的一种解
  2. ax≡b (mod n)的最小解,(ax % n ≡ b 相当与 ax + ny = b)

一般情况下,ax+by=1;得 x为a mod b 的逆元,y为 b mod a的逆元

根据扩展欧几里德算法可求得ax + by = c的一组解
x = c/gcd(a,b) * x1,y = c/gcd(a,b)*y1

有结论:
对于不定方程ax+by=c 方程(1)
结论1:方程(1)有整数解得充要条件是gcd(a,b)|c
结论2:当gcd(a,b)=1,x0,y0是方程(1)的一组整数解时,则方程(1)的全部整数解为
x = x0+bk,y = y0-ak,k∈Z
结论3:设gcd(a,b)=d > 1,则方程(1)的整数解通式为
x = x0+(b/d)*k,y = y0-(a/d)*k,k∈Z

所以求ax+by=c得最小整数解的方法为
令s = b/gcd(a,b);
最小正整数解x = (x%s+s)%s,y = (c-a*x)/b

小知识点总结
甭管用不用得到,先记下来再说0.0
1.防止 l c m ( a , b ) = a ∗ b / g c d ( a , b ) lcm(a,b)=a*b/gcd(a,b) lcm(a,b)=ab/gcd(a,b)里面的 a ∗ b a*b ab爆精度,写成 a / g c d ( a , b ) ∗ b a/gcd(a,b)*b a/gcd(a,b)b
2. l c m ( S / a , S / b ) = S / g c d ( a , b ) lcm(S/a,S/b)=S/gcd(a,b) lcm(S/a,S/b)=S/gcd(a,b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值