卷积、池化、上采样、融合、反卷积、转置卷积、图层大小与参数的计算

卷积、池化、上采样、融合、反卷积、转置卷积、图层大小与参数的计算。

1、如下代码,包含卷积、池化、上采样、融合、反卷积、转置卷积。

import keras
import numpy as np
from keras.layers import Conv2D,Dense,Flatten,BatchNormalization,Activation,Input,UpSampling2D
from keras.layers import concatenate,MaxPooling2D,Conv2DTranspose,Deconvolution2D
from keras import Model

def net(input_shape=(128,128,3)):
    X = Input(input_shape)
    conv1 = Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal', name='con1')(X)   # 进行一次卷积
    conv1 = BatchNormalization()(conv1)                                                         # 进行一次批量归一化
    conv1 = Activation('relu')(conv1)                                             # 设置激活函数
    pool1 = MaxPooling2D((2, 2), name='pool1')(conv1)  # 进行一次池化
    up1 = UpSampling2D(size=(2, 2), name='up1')(pool1)  # 进行上采样
    merge1 = concatenate([conv1, up1], name='mer1', axis=-1)  # 进行一次合并
    deconv1 = Deconvolution2D(64, (3, 3),padding='same',kernel_initializer='he_normal',name='deconv1')(merge1)  #进行一次反卷积
    score1 =<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值