epoch:训练所有的数据集的迭代次数
Bach_size:每一批次训练的数量
Iterations:训练所有数据集的批次
【diabetes.csv.gz数据集】
链接:https://pan.baidu.com/s/1h-_BURzYQPmTF4RuFv5b-w
提取码:zf88
import numpy as np
import torch
from torch.utils.data import Dataset,DataLoader
# prepare dataset
class DiabetesDataset(Dataset):
def __init__(self,filepath):
xy = np.loadtxt(filepath,delimiter=',',dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:,:-1])
self.y_data = torch.from_numpy(xy[:,[-1]])
def __getitem__(self,index):
return self.x_data[index],self.y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('diabetes.csv.gz')
train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=2)
# design model using class
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self.linear1 = torch.nn.Linear(8,6)
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self,x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
# construct loss and optimizer
model = Model()
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
# Training cycle
if __name__ == '__main__':
for epoch in range(1000):
for i ,data in enumerate(train_loader,0):
# prepare data
inputs, labels = data
# forward
y_pred = model(inputs)
loss = criterion(y_pred,labels)
print(epoch,i,loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# update
optimizer.step()
参考链接:《PyTorch深度学习实践》完结合集