大模型微调技术——概述

在这里插入图片描述
大语言模型推动新一波AI的火热发展,呈现百发齐放的趋势。“预训练+微调”技术,可以让百亿级语言模型短时间内解决不同下游任务的需求(金融、医疗、法律),极大提升了企业开发效率,甚至极有可能短时间内颠覆一家企业。本文对“微调技术”进行整体概述,首先汇总技术发展的背景和主流的脉络,正确看待大模型潜力和微调技术。其次是对微调技术的三大认识:三部曲(学习路线)、LLM训练、AI应用开发新范式。接着是涉及的核心概念,把握总体技术方向。最后是各种微调方法,及两大主流核心微调技术的异同点。

具体的各项技术原理概述可以参考整理的系列:
(阅读顺序先prefix tuning后p tuning可以更好梳理各项技术发展脉络及异同)
大模型微调技术系列原理:
大模型微调技术——概述
大模型微调技术——LoRA
大模型微调技术——Prefix Tuning 与 Prompt Tuning总结
大模型微调技术——P-Tuning及P-Tuning v2总结

一、背景

在这里插入图片描述

二、三大认识

在这里插入图片描述

涉及的核心概念

在这里插入图片描述

4. 常见的微调方法

在这里插入图片描述

5.LoRA 和P-Tuning异同

LoRA 和P-Tuning作为两大常见的主流微调技术(p-tuning v2已发布),了解两大技术的异同之处,可以更好了解微调性能差异和微调技术的选择。
在这里插入图片描述

### 大模型微调概述 大模型微调是指通过特定的技术手段,在预训练好的大规模语言模型(LLM)基础上进一步调整其参数,使其更好地适应特定任务或领域的需求。这种方法不仅能够显著减少重新训练整个模型所需的计算资源,还能提高模型在目标应用场景中的性能。 #### 微调方法分类 1. **全量微调 Full Finetuning** 这种方式涉及更新模型中所有的权重参数,尽管效果较好,但由于需要大量的数据和算力支持,并不总是最优的选择[^1]。 2. **基于提示的学习 Prompt-based Learning** - **Prompt Tuning**: 只有附加到输入序列上的连续向量是可训练的,而其他部分保持冻结状态。这种方式可以有效地利用少量标注样本实现较好的迁移学习效果[^3]。 3. **参数高效的微调 Parameter-efficient Fine-tuning (PEFT)** - **Low-Rank Adaptation (LoRA)**: 利用低秩分解的思想引入额外的小规模矩阵来近似原网络的变化方向,从而达到轻量化的目的。此策略已被证明可以在多个下游任务上取得接近甚至超越完全微调的效果[^4]。 - **Adapters**: 在原有架构之间插入小型模块——即适配器(Adapter),仅需优化这部分新增组件即可完成定制化改造工作。它同样属于高效且灵活的方法之一。 4. **Prefix Tuning 前缀调优** 通过对输入文本添加一段特殊的嵌入表示作为前置条件,使得模型可以根据不同的上下文环境做出更精准的理解与响应。这种做法既保留了一定程度上的结构变动空间,也提供了一个自动化提升效能的新途径。 ```python import torch.nn as nn class Adapter(nn.Module): def __init__(self, input_dim=768, hidden_dim=128): super().__init__() self.linear1 = nn.Linear(input_dim, hidden_dim) self.relu = nn.ReLU() self.linear2 = nn.Linear(hidden_dim, input_dim) def forward(self, x): z = self.linear1(x) z = self.relu(z) output = self.linear2(z) return output + x # Residual connection ``` #### 应用场景与时机判断 当面临如下情况时考虑实施微调操作可能是明智之举: - 当前可用的数据集较小不足以支撑从零开始构建新模型; - 对现有开源预训练成果进行个性化改进以满足特殊业务需求; - 寻求成本效益更高的解决方案而非投入过多硬件设施去执行端到端再训练过程; 综上所述,针对不同类型的项目背景选取合适的大模型微调方案至关重要,这有助于平衡开发周期、预算限制以及最终产出的质量等多个方面因素的影响。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值