N卡怎么修改录屏文件保存位置

这篇博客介绍了如何找到并更改NVIDIA显卡录制的视频默认保存位置。默认保存路径通常位于‘我的电脑’下的‘视频’文件夹。若需修改,可通过快捷键Alt+Z进入设置,选择录制选项,点击设置,然后选择自定义路径进行保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

N卡的视频录制非常好用,但是有时候找不到保存位置在哪里,这里转载下文章记录下,方便后续查看

首先告诉你默认位置→我的电脑下的"视频"文件夹(有的电脑里叫video)。

如果要改位置,快捷键Alt+Z,选择设置:

在这里插入图片描述

选择录制:

在这里插入图片描述

点右边这3个小点:

在这里插入图片描述

一直点上一步,然后选择你要保存的路径

在这里插入图片描述

系统名称:基于JSP煤炭销售管理系统 技术栈:JSP技术、Mysql数据库、B/S结构 系统功能:管理员功能:个人信息管理、员工信息管理、煤炭信息管理、煤炭类别管理、煤炭销售统计、公告信息管理;销售员工功能:个人资料管理、煤炭入库数据管理、煤炭库存信息查看、煤炭销售数据信息管理、我的煤炭销售统计、公告信息查看 摘要:随着经济的发展以及人们对于能源的需求,煤炭的销售量也在日益提升,煤炭销售过程中存在大量的销售数据,包含了煤炭类型、煤炭价格、煤炭出入库管理、煤炭销售统计等内容,然而在现实煤炭销售过程中很多销售管理的内容都是通过手动记的方式来实现,对于交易量比较小的应用场景这种手工管理模式还适用,但是对于大型和多销售人员的场景下,对于煤炭销售的管理存在很多风险。本文结合了当前煤炭销售管理中的常见问题,通过线上平台的开发设计,利用JSP技术以及Mysql数据库实现在线煤炭销售信息的管理,包含了煤炭销售管理过程中的煤炭信息管理、煤炭销售管理、煤炭入库管理、煤炭库存管理以及销售人员销量统计,销售员工和管理人员可以借助线上平台实现煤炭销售信息的优化管理,利用线上平台的便捷性帮助缓解和提升煤炭交易管理的效率,同时借助线上数据信息的查询和统计帮助优化煤炭进销存管理的数据信息准确性,从而对于煤炭整体销售过程实现有效的管控。
<think>好的,我现在需要回答用户关于使用NVIDIA GPU加速进行音频处理以分离人声的问题。根据用户提供的引用内容,特别是引用[2]和[3],UVR5软件似乎是一个合适的解决方案。首先,我需要确认UVR5是否支持NVIDIA GPU加速。 根据引用[3],UVR5确实需要NVIDIA GPU,并且建议至少RTX 1060 6GB或更高显存的显。这说明该软件利用了GPU加速,尤其是CUDA技术,这对于处理音频分离任务非常重要,因为这类任务通常计算密集,GPU可以显著加快处理速度。 接下来,用户可能需要安装相关的驱动和工具。引用[1]提到,如果没有检测到GPU,需要确保Docker环境正确配置,这可能涉及到安装NVIDIA的容器运行时。但用户可能更关心直接使用UVR5的设置步骤。因此,我需要列出安装前的准备步骤,比如检查CUDA版本、更新显驱动等。 另外,引用[2]强调了UVR5的多平台支持和易用性,这对于用户来说是一个重要优势。用户可能还希望了解其他替代方案,比如基于Python的库,如Demucs,或者云端服务如Google Colab,这样即使本地没有足够强的GPU也能处理。但考虑到用户明确提到使用N,本地软件可能更合适。 在步骤说明中,需要详细指导用户如何下载和安装UVR5,配置GPU加速,以及处理音频文件。同时,要提到可能的常见问题,比如GPU未被检测到,这时候参考引用[1]中的建议,检查Docker环境或CUDA安装是否正确。 最后,生成相关问题时要围绕用户的需求,可能涉及性能优化、替代工具、硬件要求等,确保问题具有实际参考价值,并引导用户进一步探索。</think>### 使用NVIDIA GPU加速的音频人声分离方法 #### 1. **推荐工具:UVI5 (Ultimate Vocal Remover 5)** - **支持GPU加速**:UVR5专门针对NVIDIA GPU优化,支持CUDA加速,能显著提升分离速度与质量[^2][^3]。 - **安装要求**: - 操作系统:Windows 10/macOS Catalina/Ubuntu 22.10及以上(仅64位)[^3] - 显:建议NVIDIA GPU显存≥8GB(最低RTX 1060 6GB) - 需提前安装[NVIDIA CUDA Toolkit](https://developer.nvidia.com/cuda-toolkit)和对应显驱动 #### 2. **操作步骤** **步骤1:环境准备** ```bash # 检查CUDA是否可用 nvidia-smi # 查看GPU状态 ``` **步骤2:下载并安装UVR5** - 官网下载地址:[Ultimate Vocal Remover GitHub](https://github.com/Anjok07/ultimatevocalremovergui) - 根据系统选择安装包,运行后选择“GPU加速模式” **步骤3:使用GPU加速处理音频** - 打开软件后,在设置中勾选“Enable GPU Acceleration” - 选择分离模式(如“VR Architecture”或“MDX-Net”) - 导入音频文件(支持WAV/MP3等格式),点击“Start Processing” #### 3. **替代方案** - **Demucs (Python库)**:基于PyTorch的分离工具,支持NVIDIA CUDA ```bash pip install demucs demucs --device cuda input.mp3 ``` - **NVIDIA Riva ASR**:企业级语音处理SDK,需申请API密钥[^1] #### 4. **性能优化建议** - 若GPU未被检测到,检查Docker环境或CUDA版本兼容性 - 对于长音频文件,建议分割为5分钟片段处理 - 关闭其他占用GPU资源的程序 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值