Cell Decomposition系列路径规划算法——PCD

PCD是一种概率细胞分解算法,适用于高维路径规划。它通过概率采样和细胞分解策略寻找从起点到终点的安全路径。在每个cell中,根据采样点确定其状态:可能是自由、可能是占用或已知混合。通过图搜索找到可能的通道,若路径不安全则进行局部路径规划和细胞分解迭代,直到找到安全路径。PCD在处理狭窄通道时效率较低,但总体在高维路径规划中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

做个正直的人

思想

PCD是目前Cell Decomposition算法中,我认为表现最好的。
基于概率的算法(比如RRT、PCD)和确定性算法(比如A*、Dijkstra)相比,不需要显式的表达,因而在高维问题中具有相当大的优势。可以大大节省计算量和空间需求。

  • PCD虽然是基于ACD的,也是对各个cell进行不同粒度的分解,也是采用固定的形状,但是PCD中的cell是free还是occupied并不是确定的,而是概率的。PCD在一个cell中进行采样,如果所有的采样都是free,那么,这一个cell就被认为是 possibly free cell;如果所有的采样都是occupied,那么,这一个cell就被认为是possibly occupied cell;如果采样中,有free,有occupied,那么这一个cell被认为是known to be mixed,也就是需要被分解成前两个类型。
  • 在一轮分解完成之后,采用一个图搜索算法去搜索一个连接init和goal的cell队列,称为通道channel。
  • 搜索到一个通道之后,就会检查相应的path是不是安全,不安全就分解那一个不安全的possibly free cell;若是没有搜索到这样一个通道,那么说明当前的所有possibly free cell还没有连接成1个连通图,这肯定是因为有possibly occupied cell把这两个子连通图给隔开了,那么PCD就去这些possibly occupied cell采样并分解。

这一些步骤迭代下去,就能找到一个连接init和goal的path。下面具体的讲解一下PCD算法的细节。

1、表示

我们把一个cell k i k_i ki划分为以下三类之一

  • possibly free cell,if 该cell内的采样都是free
  • possibly occupied cell,if 该cell内的采样都是occupied
  • known to be mixed,if 该cell内的采样有free,有occupied

包含了起始位置 q i n i t q_{init} qinit q g o a l q_{goal} qgoal的cell分别记为 K i n i t K_{init} Kinit K g o a l K_{goal} Kgoal

在图搜索阶段,我们把每一个possibly free cell都看作是一个node,如果两个possibly free cell是相邻的(有公共边),那么我们就把这两个cell对应的node用edge给连接起来。最后我们就可以得到一些个连通图。

包含了 K i n i t K_{init} Kinit的连通图记为开始区域 R i n i t R_{init} Rinit

包含了 K g o a l K_{goal} Kgoal的连通图记为目标区域 R g o a l R_{goal} Rgoal

搜索阶段我们找到的那一系列连接 K i n i t K_{init} Kinit K g o a l K_{goal} Kgoal的cells称为一个通道channel。

2、算法步骤

  1. 初始化:把整个地图看做一个cell,这个cell中有两个采样点 q i n i t q_{init} qinit q g o a l q_{goal} qgoal
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值