Human Pose Estimation with Spatial Contextual Information(CVPR2019)

问题:姿态估计关节点遮挡问题

思路:捕获关节点之间的空间相关性,进行关节点信息的传播,来预测以及纠正其他关节点

方法:级联预测融合(CPF)和姿态图神经网络(PGNN)

1 摘要

本文讨论了空间上下文信息在人体姿态估计中的重要性。本文提出了两个模块级联预测融合(CPF)和姿态图神经网络(PGNN),利用潜在的上下文信息。级联预测融合(CPF)累计来自前一个阶段的预测映射,已提取信息,得到的特征作为先验来知道后序阶段的一簇额。姿态图神经网络(PGNN)促进关节点之间的空间关系传播。

2 引言

姿态估计中挑战包括外表的巨大变化,不常见身体姿势和遮挡。

本文认为用多阶段的学习过程是有效的,不同阶段的预测具有不同的性质。具体来说,来自较低层次的预测具有更精确的定位信息,而来自较高层次的预测具有更强的语义信息。

本文还设计了一种姿态图神经网络,灵活而高效的学习身体关节的结构化表示。PGNN建立在一个可以继承的各种姿态估计网络的图上。图中的每个关节点登与相邻的身体部位相关联。因此,通过边缘构造来捕捉空间关系,实现不同关节点之间的直接消息传播。

下图为多阶段预测通道,生成一组辅助预测。在第一阶段,容易识别易变形的关节点,而其他关节点位置不清楚。第二阶段,关节点之间的相对位置有助于解决起义。第三阶段,所有关节点都收敛到最终的预测

 贡献:

  1. 提出了Cascade Prediction Fusion网络用来预测关键点
  2. 提出了Pose Graph Neural Network, 用来对1预测的关键点进行修正

方法

3.1. Cascade Prediction Fusion (CPF) 

图框架图所示,CPF网络仍然是multi-stage的形式, 但对pred heatmap做了不一样的处理. stage t 得到的heatmap不再是直接作为 stage t+1 的输入, 而是先经过 1x1 conv 增加 channel 数, 再和 stage t+1 的featuremap element-wise add之后, 再得到 stage t+1 的heatmap 输出. 文章说这么做可以最大程度的保留前面层网络提取到的位置信息, 用来辅助后面高层语义层提取的语义信息, 使得最终提取出来的heatmap的点更准确

3.2. Graph Neural Network (GNN)

 GNN以图G={K,E}输入,K为点,E为边。k中隐藏状态向量会周期更新,为时间步t的隐藏状态,它通过时间步t的邻接节点信息更新,是选择邻接节点信息函数,为更新隐藏状态方法

 

 Graph Construction

 

 其中为backbone,是参数,I是样本

Information Propagation

 是卷积权重,是偏置项,是边集合

本文还在图神经网络上加了门控,以下是门控GRU的公式

 Output and Learning

最终预测结果:

 loss函数

 

 

 4 实验

在MPII上结果

在LSP上结果 

可以看出,确实本文的两个模块对四肢节点预测更好,而四肢是最容易被遮挡的关节点。 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值