pytorch学习(六)---搭建简单的神经网络以及sequential的使用

这篇博客介绍了如何基于PyTorch搭建一个简单的神经网络,以CIFAR10的模型为例。内容包括理解卷积层后图片尺寸的计算,使用5x5卷积核并设置padding为2来保持输入尺寸不变。博主分享了使用sequential模块进行模型构建的方法,简化代码,并提到tensorboard可用于展示计算图。
摘要由CSDN通过智能技术生成

        本篇自学笔记来自于b站《PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】》,Up主讲的非常通俗易懂,文章下方有视频连接,如有需要可移步up主讲解视频,如有侵权,实非故意,深表歉意,请与我联系,删除相关内容!

        本节以CIFAR10的模型结果(如下图)为例,搭建该简易的神经网络。

         首先需要知道某一个尺寸的图片经过卷积之后的尺寸如何计算。

        知道怎么计算之后,看模型图输入为32*32,经过一个5*5卷积核卷积之后,图片的尺寸依旧是32*32,通过上述公式,W1=32,F=5,S一般设为1,且要求W2=32,经过计算得到P=2,所以在进卷积时需要设置padding为2.

具体代码如下,注释的部分是按照之前的方式写的,没注释的部分是使用sequential写的,相当于将这些操作打包,在forward部分直接调用sequential定义好的模型即可。还跟着up学到了tensorboard可以显示计算图,即代码最下面的add_graph(),参数需要给所用的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值