本篇自学笔记来自于b站《PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】》,Up主讲的非常通俗易懂,文章下方有视频连接,如有需要可移步up主讲解视频,如有侵权,实非故意,深表歉意,请与我联系,删除相关内容!
本节以CIFAR10的模型结果(如下图)为例,搭建该简易的神经网络。
首先需要知道某一个尺寸的图片经过卷积之后的尺寸如何计算。
知道怎么计算之后,看模型图输入为32*32,经过一个5*5卷积核卷积之后,图片的尺寸依旧是32*32,通过上述公式,W1=32,F=5,S一般设为1,且要求W2=32,经过计算得到P=2,所以在进卷积时需要设置padding为2.
具体代码如下,注释的部分是按照之前的方式写的,没注释的部分是使用sequential写的,相当于将这些操作打包,在forward部分直接调用sequential定义好的模型即可。还跟着up学到了tensorboard可以显示计算图,即代码最下面的add_graph(),参数需要给所用的