纸病缺陷检测

21.10.9

《opencv3计算机视觉 python语言实现二》

HOG是计算梯度。

 用“图像金字塔”和“滑动窗口”解决。

图像金字塔:

        书是跳着看的没看懂,看了篇文章。

        CV学习笔记(十二):图像金字塔 - 知乎

        在我们进行图像处理的时候,会经常对源图像的尺寸进行放大或者缩小的变换,进而转换为我们指定尺寸的目标图像。在对图像进行放大和缩小的变换的这个过程,我们称为尺度调整。

        而图像金字塔则是图像多尺度调整表达的一种重要的方式,图像金字塔方法的原理是:将参加融合的的每幅图像分解为多尺度的金字塔图像序列,将低分辨率的图像在上层,高分辨率的图像在下层,上层图像的大小为前一层图像大小的1/4。层数为0,1,2……N。将所有图像的金字塔在相应层上以一定的规则融合,就可得到合成金字塔,再将该合成金字塔按照金字塔生成的逆过程进行重构,得到融合金字塔。这个总的思路就是一下所有基于金字塔融合的算法过程,不同点就在于分解构造的金字塔不同,每层的融合规则不一样,重构的方法不同而已。

        有两种类型的金字塔经常出现在文献和应用当中:

        高斯金字塔(Gaussian pyramid): 用来向下采样(主要)

        拉普拉斯金字塔(Laplacian pyramid): 用来从金字塔低层图像重建上层未采样图像,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。 

(1)高斯金字塔

        高斯金字塔是最基本的图像塔。首先将原图像作为最底层图像G0(高斯金字塔的第0层),利用高斯核(5*5)对其进行卷积,然后对卷积后的图像进行下采样(去除偶数行和列)得到上一层图像G1,将此图像作为输入,重复卷积和下采样操作得到更上一层图像,反复迭代多次,形成一个金字塔形的图像数据结构,即高斯金字塔。

 

21.10.11
滑动窗口、非极大抑制NMS:

目标检测学习-滑动窗口法_王伟王胖胖的博客-CSDN博客_目标检测滑动窗口

滑动窗口:是用不同尺寸的框搜索图片,找到目标(分类器确定了存在某一特征)。

非极大抑制:建立了图像金字塔后,通过滑动窗口,每层金字塔都会得到搜索到目标的框,找到最好的框(分类器输出概率最高),将与他明显重合(交并比iou超过阈值)的框丢掉。

SVM:

刚刚开始看python,一个都不懂,都加上注释,在这篇文章。

https://blog.csdn.net/qq_41858135/article/details/120725308

参考文章:HOG+SVM行人检测_hongbin_xu的博客-CSDN博客_hog+svm行人检测

opencv——SVM参数详解_Ring__Rain的博客-CSDN博客_opencv svm 参数

OpenCV-Python教程:55.OpenCV里的K-Means聚类

OpenCV(一)---支持向量机 SVM(博主写了opencv关于svm的参数)

Opencv 中 waitkey()& 0xFF,“0xFF”的作用解释_糯米-CSDN博客

if __name__ == '__main__' 如何正确理解? - 知乎

21.10.15

        机器学习笔记:机器学习笔记_大西纸的博客-CSDN博客

        根据边缘截取图片_大西纸的博客-CSDN博客

        将之前的人体检测用于空洞和裂痕检测:

        https://blog.csdn.net/qq_41858135/article/details/120778897

21.10.19

机器视觉中的BOW

        BOW方法的步骤:

        1、取一个样本数据集

        2、对数据集的每个图片提取描述符

        3、将每个描述符添加到BOW训练器中

        4、将描述符聚类到K簇中

K-means聚类

        K-means 是我们最常用的基于欧式距离的聚类算法,其认为两个目标的距离越近,相似度越大。K表示要分割的数据集中的簇类,means是均值。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值