双目三维重建/基于opencv的BM法,匹配两幅图像,并将三维点保存为txt文件

/* 使用matlab标定工具箱得到的相机参数*/

/*

两张图片尺寸,640*360. 下载地址   

https://download.csdn.net/download/qq_41862779/10750370

*/
#include <opencv2/opencv.hpp>  
#include <iostream>  

using namespace std;
using namespace cv;

const int imageWidth = 640;                      //摄像头单目的分辨率########--【需要调整参数的位置1】--#############
const int imageHeight = 360;

Size imageSize = Size(imageWidth, imageHeight);

Mat rgbImageL, grayImageL;
Mat rgbImageR, grayImageR;
Mat rectifyImageL, rectifyImageR;

Rect validROIL;                                   //图像校正之后,会对图像进行裁剪,这里的validROI就是指裁剪之后的区域  
Rect validROIR;

Mat mapLx, mapLy, mapRx, mapRy;                   //映射表  
Mat Rl, Rr, Pl, Pr, Q;                            //校正旋转矩阵R,投影矩阵P, 重投影矩阵Q
Mat xyz;                                          //三维坐标
string point_cloud;

Point origin;                                     //鼠标按下的起始点
Rect selection;                                   //定义矩形选框
bool selectObject = false;                        //是否选择对象

int blockSize = 1, uniquenessRatio = 38, numDisparities = 4; //与算法相关的参数,【需要调整参数的位置2】--############
//int blockSize = 6, uniquenessRatio = 30, numDisparities = 9;
Ptr<StereoBM> bm = StereoBM::create(16, 9);


static void saveXYZ(const Mat& mat)
{
    const double max_z = 1.0e4;
    FILE* fp = fopen("point_cloud.txt", "wt");
    for (int y = 0; y < mat.rows; y++)
    {
        for (int x = 0; x < mat.cols; x++)
        {
            Vec3f point = mat.at<Vec3f>(y, x);
            if (fabs(point[2] - max_z) < FLT_EPSILON || fabs(point[2]) > max_z) continue;
            fprintf(fp, "%f %f %f\n", point[0], point[1], point[2]);
        }
    }
    fclose(fp);
}


/*
Intrinsic parameters of left camera :

Focal Length : fc_left = [570.53941   570.43311] ? [1.23458   1.25747]
Principal point : cc_left = [338.37062   157.92971] ? [1.22416   0.85779]
Skew : alpha_c_left = [0.00000] ? [0.00000] = > angle of pixel axes = 90.00000 ? 0.00000 degrees
    Distortion : kc_left = [0.07076 - 0.11917 - 0.00301 - 0.00229  0.00000] ? [0.00686   0.03596   0.00061   0.00089  0.00000]


    Intrinsic parameters of right camera :

Focal Length : fc_right = [574.57663   574.96555] ? [1.20778   1.23299]
Principal point : cc_right = [331.42666   161.20258] ? [1.23783   0.87354]
Skew : alpha_c_right = [0.00000] ? [0.00000] = > angle of pixel axes = 90.00000 ? 0.00000 degrees
    Distortion : kc_right = [0.04656 - 0.10958 - 0.00220 - 0.00203  0.00000] ? [0.00693   0.03685   0.00059   0.00085  0.00000]


    Extrinsic parameters(position of right camera wrt left camera) :

    Rotation vector : om = [0.00867   0.00611 - 0.00192] ? [0.00196   0.00292  0.00016]
    Translation vector : T = [-59.69230 - 0.06008  0.68340] ? [0.17030   0.15721  0.78782]


    Note : The numerical errors are approximately three times the standard deviations(for reference).
    * /

    /*左目相机标定参数------------------------
fc_left_x   0            cc_left_x
0           fc_left_y    cc_left_y
0           0            1
-----------------------------------------*/

Mat cameraMatrixL = (Mat_<double>(3, 3) << 570.53941, 0, 338.37062,
    0, 570.43311, 157.92971,
    0, 0, 1);


Mat distCoeffL = (Mat_<double>(5, 1) << 0.07076, -0.11917, -0.00301, -0.00229, 0.00000);
//[kc_left_01,  kc_left_02,  kc_left_03,  kc_left_04,   kc_left_05]


/*右目相机标定参数------------------------
fc_right_x   0              cc_right_x
0            fc_right_y     cc_right_y
0            0              1
-----------------------------------------*/
Mat cameraMatrixR = (Mat_<double>(3, 3) << 574.57663, 0, 331.42666,
    0, 574.96555, 161.20258,
    0, 0, 1);


Mat distCoeffR = (Mat_<double>(5, 1) << 0.04656, -0.10958, -0.00220, -0.00203, 0.00000);
//[kc_right_01,  kc_right_02,  kc_right_03,  kc_right_04,   kc_right_05]


Mat T = (Mat_<double>(3, 1) << -59.69230, -0.06008, 0.68340);    //T平移向量
                                        //[T_01,        T_02,       T_03]

Mat rec = (Mat_<double>(3, 1) << 0.00867, 0.00611, -0.00192);   //rec旋转向量
                                         //[rec_01,     rec_02,     rec_03]


//########--【以下双目的标定参数为:需要调整参数的位置3】--#############
//相机双目标定的结果与如下各参数的对应关系见:双目标定结果说明.pdf,pdf文档位于main.cpp(即本文档)同级文件夹--#############

/*左目相机标定参数------------------------
fc_left_x   0            cc_left_x
0           fc_left_y    cc_left_y
0           0            1
-----------------------------------------*/
/*
Mat cameraMatrixL = (Mat_<double>(3, 3) << 1450.45938,    0,             579.88716,
                                           0,             1452.62035,    376.32695,
                                           0,             0,             1);


Mat distCoeffL    = (Mat_<double>(5, 1) << 0.03569,      0.29314,     -0.00011,    -0.00491,     0.00000);
                                         //[kc_left_01,  kc_left_02,  kc_left_03,  kc_left_04,   kc_left_05]

*/
/*右目相机标定参数------------------------
fc_right_x   0              cc_right_x
0            fc_right_y     cc_right_y
0            0              1
-----------------------------------------*/
/*
Mat cameraMatrixR = (Mat_<double>(3, 3) << 1451.78149,    0, 684.04159,
                                           0, 1453.54807, 350.52935,
                                           0,            0,             1);


Mat distCoeffR    = (Mat_<double>(5, 1) << 0.09596,      -0.42760,     -0.00378,     -0.00112,      0.00000);
                                        //[kc_right_01,  kc_right_02,  kc_right_03,  kc_right_04,   kc_right_05]


Mat T             = (Mat_<double>(3, 1) << -28.11909,   0.11966,    0.21590);    //T平移向量
                                        //[T_01,        T_02,       T_03]

Mat rec           = (Mat_<double>(3, 1) << -0.01688,    -0.00781,   -0.00766);   //rec旋转向量
                                         //[rec_01,     rec_02,     rec_03]
 */
 //########--双目的标定参数填写完毕----------------------------------------------


Mat R;                                                     //R矩阵,用于中间计算


//--立体匹配--------------------------------------------------------------------
void stereo_match(int, void*)
{
    bm->setBlockSize(2 * blockSize + 5);             //SAD窗口大小,5~21之间为宜
    bm->setROI1(validROIL);
    bm->setROI2(validROIR);
    bm->setPreFilterCap(31);
    bm->setMinDisparity(0);                          //最小视差,默认值为0, 可以是负值,int型
    bm->setNumDisparities(numDisparities * 16 + 16); //视差窗口,即最大视差值与最小视差值之差,窗口大小必须是16的整数倍,int型
    bm->setTextureThreshold(10);
    bm->setUniquenessRatio(uniquenessRatio);         //uniquenessRatio主要可以防止误匹配
    bm->setSpeckleWindowSize(100);
    bm->setSpeckleRange(32);
    bm->setDisp12MaxDiff(-1);
    Mat disp, disp8;
    bm->compute(rectifyImageL, rectifyImageR, disp); //输入图像必须为灰度图
    disp.convertTo(disp8, CV_8U, 255 / ((numDisparities * 16 + 16)*16.));     //计算出的视差是CV_16S格式
    reprojectImageTo3D(disp, xyz, Q, true);          //在实际求距离时,ReprojectTo3D出来的X / W, Y / W, Z / W都要乘以16(也就是W除以16),才能得到正确的三维坐标信息。
    xyz = xyz * 16;
    /*
    for (int y = 0; y < xyz.rows; y++)
    {
        for (int x = 0; x < xyz.cols; x++)
        {
            Vec3f point = xyz.at<Vec3f>(y, x);
            if (fabs(point[2] - 1.0e4) < FLT_EPSILON || fabs(point[2]) > 1.0e4) continue;
            cout << point[0] << " " << point[1] << " " << point[2] << endl;
        }
    }
    */
    //cout << xyz;

    imshow("disparity", disp8);
}

//--描述:鼠标操作回调--------------------------------------------------
static void onMouse(int event, int x, int y, int, void*)
{
    if (selectObject)
    {
        selection.x = MIN(x, origin.x);
        selection.y = MIN(y, origin.y);
        selection.width = std::abs(x - origin.x);
        selection.height = std::abs(y - origin.y);
    }

    switch (event)
    {
    case EVENT_LBUTTONDOWN:             //鼠标左按钮按下的事件
        origin = Point(x, y);
        selection = Rect(x, y, 0, 0);
        selectObject = true;
        cout << origin << "in world coordinate is: " << xyz.at<Vec3f>(origin) << endl;
        break;
    case EVENT_LBUTTONUP:               //鼠标左按钮释放的事件
        selectObject = false;
        if (selection.width > 0 && selection.height > 0)
            break;
    }
}


//--主函数---------------------------------------------------------------------
int main()
{

    //--立体校正-------------------------------------------------------------------
    Rodrigues(rec, R);                                   //Rodrigues变换
    stereoRectify(cameraMatrixL, distCoeffL, cameraMatrixR, distCoeffR, imageSize, R, T, Rl, Rr, Pl, Pr, Q, CALIB_ZERO_DISPARITY,
        0, imageSize, &validROIL, &validROIR);
    initUndistortRectifyMap(cameraMatrixL, distCoeffL, Rl, Pr, imageSize, CV_32FC1, mapLx, mapLy);
    initUndistortRectifyMap(cameraMatrixR, distCoeffR, Rr, Pr, imageSize, CV_32FC1, mapRx, mapRy);

    //--读取图片,【需要调整参数的位置4】----------------------------------------------------------------
    rgbImageL = imread("left02.jpg", CV_LOAD_IMAGE_COLOR);
    cvtColor(rgbImageL, grayImageL, CV_BGR2GRAY);
    rgbImageR = imread("right02.jpg", CV_LOAD_IMAGE_COLOR);
    cvtColor(rgbImageR, grayImageR, CV_BGR2GRAY);
    cout << rgbImageL.size() << endl;
    cout << rgbImageR.size() << endl;
    namedWindow("ImageL Before Rectify", WINDOW_NORMAL);  imshow("ImageL Before Rectify", grayImageL);
    namedWindow("ImageR Before Rectify", WINDOW_NORMAL);  imshow("ImageR Before Rectify", grayImageR);

    //--经过remap之后,左右相机的图像已经共面并且行对准----------------------------------------------
    remap(grayImageL, rectifyImageL, mapLx, mapLy, INTER_LINEAR);
    remap(grayImageR, rectifyImageR, mapRx, mapRy, INTER_LINEAR);

    //--把校正结果显示出来---------------------------------------------------------------------------
    Mat rgbRectifyImageL, rgbRectifyImageR;
    cvtColor(rectifyImageL, rgbRectifyImageL, CV_GRAY2BGR);
    cvtColor(rectifyImageR, rgbRectifyImageR, CV_GRAY2BGR);

    namedWindow("ImageL After Rectify", WINDOW_NORMAL); imshow("ImageL After Rectify", rgbRectifyImageL);
    namedWindow("ImageR After Rectify", WINDOW_NORMAL); imshow("ImageR After Rectify", rgbRectifyImageR);

    //--显示在同一张图上-----------------------------------------------------------------------------
    Mat canvas;
    double sf;
    int w, h;
    sf = 600. / MAX(imageSize.width, imageSize.height);
    w = cvRound(imageSize.width * sf);
    h = cvRound(imageSize.height * sf);
    canvas.create(h, w * 2, CV_8UC3);                                             //注意通道

//--左图像画到画布上-----------------------------------------------------------------------------
    Mat canvasPart = canvas(Rect(w * 0, 0, w, h));                                //得到画布的一部分  
    resize(rgbRectifyImageL, canvasPart, canvasPart.size(), 0, 0, INTER_AREA);    //把图像缩放到跟canvasPart一样大小  
    Rect vroiL(cvRound(validROIL.x*sf), cvRound(validROIL.y*sf),                  //获得被截取的区域    
        cvRound(validROIL.width*sf), cvRound(validROIL.height*sf));
    rectangle(canvasPart, vroiL, Scalar(0, 0, 255), 3, 8);
    cout << "Painted ImageL" << endl;

    //--右图像画到画布上-----------------------------------------------------------------------------
    canvasPart = canvas(Rect(w, 0, w, h));                                        //获得画布的另一部分  
    resize(rgbRectifyImageR, canvasPart, canvasPart.size(), 0, 0, INTER_LINEAR);
    Rect vroiR(cvRound(validROIR.x * sf), cvRound(validROIR.y*sf),
        cvRound(validROIR.width * sf), cvRound(validROIR.height * sf));
    rectangle(canvasPart, vroiR, Scalar(0, 0, 255), 3, 8);
    cout << "Painted ImageR" << endl;

    //--画上对应的线条-------------------------------------------------------------------------------
    for (int i = 0; i < canvas.rows; i += 16)
        line(canvas, Point(0, i), Point(canvas.cols, i), Scalar(0, 255, 0), 1, 8);
    namedWindow("rectified", WINDOW_NORMAL);  imshow("rectified", canvas);

    //--显示结果-------------------------------------------------------------------------------------
    namedWindow("disparity", WINDOW_NORMAL);

    //--创建SAD窗口 Trackbar-------------------------------------------------------------------------
    createTrackbar("BlockSize:\n", "disparity", &blockSize, 8, stereo_match);

    //--创建视差唯一性百分比窗口 Trackbar------------------------------------------------------------
    createTrackbar("UniquenessRatio:\n", "disparity", &uniquenessRatio, 50, stereo_match);

    //--创建视差窗口 Trackbar------------------------------------------------------------------------
    createTrackbar("NumDisparities:\n", "disparity", &numDisparities, 16, stereo_match);

    //--鼠标响应函数setMouseCallback(窗口名称, 鼠标回调函数, 传给回调函数的参数,一般取0)------------
    setMouseCallback("disparity", onMouse, 0);
    stereo_match(0, 0);

    saveXYZ(xyz);  //在主函数中调用函数。
    waitKey(0);
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值