大模型量化需要学习的矩阵运算基础

矩阵运算

矩阵相乘求导

假设a,b为可以相互点乘的向量,对b求导为a,同理对a求导为b,这是因为在矩阵的点积运算中a的每一行会乘以b的每一列,求导的过程实际是对b的过程,,所以最后保留下来的是a而不是

矩阵求导规则:

对于 p^ T Ap 形式的表达式,其中 A是对称矩阵,求导结果是:\frac∂ ∂_p = 2Ap

对于非对称矩阵A,有:\frac ∂ ∂_p (p^ T Ap)=(A+A ^T )p

求解矩阵的逆:

求解矩阵 H(x) 的逆矩阵 H(x)^{-1}通常涉及线性代数的几个方法。以下是常用的方法:

  • 直接求逆:H(x) ^{−1} = \frac 1 {det(H(x))} adj(H(x)),其中det(H(x))是矩阵H(x) 的行列式。adj(H(x)) 是H(x)的伴随矩阵。这种及算法复杂度较高,对大规模矩阵效率较低。
  • LU分解:将矩阵 H(x)分解为一个下三角矩阵L 和一个上三角矩阵U:H(x)=L \cdot U ,通过解两个三角矩阵的逆矩阵,最终得到H(x)的逆矩阵。将L^{-1}U^{-1}相乘,即可得到H(x)^{-1}H(x)^{-1}=L^{-1} \cdot U^{-1}
  • Cholesky分解:如果H(x)是正定的(这是海森矩阵常见的性质),我们可以使用 Cholesky 分解,它更为高效:将矩阵H(x)分解为一个下三角矩阵L及其转置:H(x)^{-1}=L \cdot L^T,通过解两个三角矩阵的逆矩阵(与 LU 分解类似)来求出 H(x)^{-1}
  • 共轭梯度法:对于非常大的矩阵,直接求逆是不切实际的。在这种情况下,共轭梯度法是一种常用的迭代方法,用于求解H(x)p = -∇L(x)这样的线性方程组,而无需显式求出 H(x)^{-1}

伴随矩阵:

伴随矩阵是线性代数中的一个概念,与矩阵的逆和行列式有关。对于一个给定的方阵A,伴随矩阵 adj(A)是一个矩阵,其元素是A的代数余子式(cofactor)的转置。

具体来说,给定一个n \times n的矩阵A,伴随矩阵adj(A)的计算步骤如下:

1 计算代数余子式:对于矩阵A中的每一个元素a_{ij},计算其代数余子式C_{ij}。代数余子式是去掉i行和j列后,剩余矩阵的行列式,再乘以(-1)^{i+j}.

2 形成代数余子式矩阵:将所有代数余子式 C_{ij}组成一个新的矩阵 C,这个矩阵称为代数余子式矩阵.

3 转置:对代数余子式矩阵C进行转置,得到伴随矩阵 adj(A)。

伴随矩阵有一个重要的性质,就是对于任意的方阵 A,有:A\cdot adj(A) = adj(A) \cdot A = det(A)\cdot I 其中 det(A)是矩阵A的行列式,I是单位矩阵.

伴随矩阵在计算矩阵的逆时也非常有用,特别是当矩阵A可逆时:A^{−1} = \frac{1}{\det(A)} \text{adj}(A)

  • 7
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值