详细解读Latent Diffusion Models:原理和代码

本文详细解析Latent Diffusion Models,针对diffusion models的高昂计算成本,提出在潜空间中训练的解决方案,降低计算复杂度,实现高分辨率图像合成。通过自编码器和交叉注意力机制,LDMs在多种任务上展现优越性能,包括无条件图像生成、图像修复和超分辨率,同时减少计算需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion Models专栏文章汇总:入门与实战

前言:CVPR 2022中的一项新工作latent diffusion models引起了广泛关注,提出了两段式diffusion models能有效节省计算资源,latent attention技术为通用image-to-image任务打下基础,让人耳目一新,具有极强的借鉴意义和启发性,值得深度阅读。

目录

目前diffusion models存在的问题:高昂的计算代价

主要贡献

灵感来源

方法详解

自编码器法降低计算复杂度

了不起的Attention

论文和代码地址

个人感悟


目前diffusion models存在的问题:高昂的计算代价

通过将图像形成过程分解为去噪自编码器的顺序应用,扩散模型在图像数据等方面取得了最先进的合成结果。此外,它们的表述允许一个指导机制来控制图像生成过程&#

### 潜在编码的概念 潜在编码(Latent Code),也被称为隐含变量,在机器学习特别是无监督学习自监督学习中扮演着重要角色。通过自动编码器或其他生成模型,可以将高维的数据映射到低维度的空间内表示,这个空间内的向量即为潜在编码[^1]。 潜在编码能够捕捉原始数据中的内在结构特征,并且可以在降维的同时保留重要的信息用于后续的任务如分类、聚类或是重建原数据。对于图像处理而言,潜在编码可以帮助提取出图片的关键属性;而在自然语言处理方面,则可用于获取文本语义上的抽象表达形式[^3]。 ### 应用实例 #### 图像生成与编辑 在一个典型的变分自编码器(VAE)框架下,输入一张人脸照片经过编码得到其对应的潜在向量z。通过对该向量施加一定的操作比如线性插值或者随机扰动后再送入解码部分即可实现新面孔的合成以及现有面貌特性的调整修改等功能。 ```python import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader from models.vae import VAE # 假设有一个VAE模型定义文件models/vae.py transform = transforms.Compose([transforms.ToTensor()]) dataset = datasets.MNIST('./data', train=True, download=True, transform=transform) dataloader = DataLoader(dataset, batch_size=64, shuffle=True) model = VAE().cuda() for epoch in range(num_epochs): for i, (images, _) in enumerate(dataloader): images = images.cuda() recon_images, mu, logvar = model(images) ``` #### 文本分析 Word Embedding是一种常见的利用词嵌入来构建文档级别的潜在表征的方法之一。它不仅考虑到了词语本身的含义还兼顾了上下文中其他单词对其产生的影响从而形成更加丰富的语境描述[^2]。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值