无需网络,手机上轻松部署本地大模型

目前支持的移动端布署方式

在这里插入图片描述

1. Termux 安装法

优点: 可以在手机上安装 Termux,然后通过该工具安装 Linux 系统,并下载和运行大模型(如 Ollama、Llama 3和Phi-3等)。

缺点: 安装过程复杂,涉及大量命令行操作,需要在终端中进行设置和使用,使用体验差,适合技术专家或开发者。

具体安装过程参考: https://www.53ai.com/news/qianyanjishu/1795.html

总结: 比较适合有一定技术背景的用户,体验不如其他方法友好。

2. MLC

优点: 支持 GPU 调用,可能提升计算速度,较为推荐的方案。

AppStore可下载,安卓上使用方法参考:在手机上运行大模型(使用MLC-LLM) · Valdanitooooo/knowledge-hub · Discussion #66 · GitHub[1] ,文档地址:Introduction to MLC LLM — mlc-llm 0.1.0 documentation[2]

缺点: 使用旧手机时,容易出现黑屏等问题,可能是由于占用过多 GPU 资源。新手机可能会有所改善。

总结: 适合较新型号的手机,老旧设备可能体验较差。

3. Maid APP 安装法

优点: 通过安装 Maid APP,可以直接使用大模型,安装较为简便。

缺点: 需要科学上网,运行速度非常慢,使用体验差,不推荐使用。

总结: 虽然安装简便,但性能和速度的限制使得这不是一个理想选择。

4. PocketPal

优点: 国外的一个应用,运行方便,速度较快,适合大多数用户使用。开源,这是重点!!!

缺点: 安装包只能在谷歌商店下载,需要特殊网络才能使用,且国内用户访问速度慢

总结: 瑕不掩瑜,PocketPal AI是一款比较好的选择。

接下来,我们将重点就PocketPal AI进行更为详细的介绍。

关于PocketPal AI 📱🚀

PocketPal AI 是一款袖珍型的 AI 助手,基于小型语言模型(SLMs)运行,直接在您的手机上运行。它支持 iOS 和 Android,允许您在无需互联网连接的情况下与各种 SLMs 进行互动。

特点

离线 AI 助手:直接在设备上运行语言模型,无需互联网连接。•模型灵活性:下载并切换多个 SLMs,包括 Danube 2 和 3、Phi、Gemma 2 和 Qwen。• 自动卸载/加载:当应用在后台时,自动管理内存,通过卸载模型来节省空间。 •推理设置:自定义模型参数,如系统提示、温度、BOS 标记和聊天模板。 • 实时性能指标:查看每秒生成的令牌数量和每个令牌的毫秒数。

安装

iOS

从 App Store 下载 PocketPal AI: 在 App Store 下载[3]

Android

通过 Google Play 获取 PocketPal AI: 在 Google Play 获取[4]

可用模型

PocketPal AI 预配置了一些流行的 SLMs(小型语言模型):

•Danube 2 和 3•Phi•Gemma 2•Qwen

在使用之前,模型需要先下载。您可以直接从应用程序中下载并使用这些模型,还可以加载任何其他您喜欢的 GGUF 模型!

使用 PocketPal AI

有关如何使用 PocketPal AI 的详细指南,请查看 入门指南[5]。

下载模型

•点击汉堡菜单•进入“模型”页面•选择您需要的模型并点击下载

加载模型

下载后,点击 加载 按钮将模型加载到内存中。现在,您可以开始与模型对话!

小贴士

在 iOS 设备上,默认启用了 Apple 的 GPU API(Metal)。如果您遇到性能问题,可以尝试禁用它。

自动卸载/加载

为了保持设备运行顺畅,PocketPal AI 可以自动管理内存使用:

•在模型页面启用“自动卸载/加载”(默认启用)•当应用程序在后台时,它会卸载模型•当您返回时,模型会重新加载(对于较大的模型,可能需要等待几秒钟)

高级设置

点击箭头图标访问高级 LLM 设置,例如:

•温度•BOS 标记•聊天模板选项•等等

最后,让我们开始聊天!

一旦模型加载完成,进入“聊天”页面并开始与加载的模型对话!

生成性能指标也会显示。如果感兴趣,可以通过观察聊天气泡查看实时性能指标:每秒令牌数和每个令牌的毫秒数。

复制文本

重要提示:目前,我还没有找到一种简单的方法,可以在保留文本格式的同时,从生成的响应中选择并复制文本,尤其是 Markdown 格式的支持。

在此期间,以下是复制文本的当前选项:

•段落级复制:长按特定段落以复制其内容。•全部响应复制:点击文本气泡底部的复制图标以复制整个 AI 生成的响应。

我知道这些选项可能不太理想,这也是我在使用其他应用时遇到的困扰。复制文本部分内容的困难,曾是类似 ChatGPT 等聊天应用中的一个特别令人烦恼的问题。

开发者们:PocketPal AI 是使用 React Native 构建的。找到一个平衡文本选择与保留格式(特别是 Markdown 支持)的方法对我来说一直很困难。如果您有相关经验,我非常愿意听听您的意见!

源码及安装布署地址

代码及详细的开发安装与布署地址:https://github.com/a-ghorbani/pocketpal-ai

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值