专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
目录
本文详细介绍了如何利用LSTM进行时间序列预测,特别是针对多变量多步预测的问题。文章涵盖了从数据处理、训练数据构造、LSTM模型训练到预测结果的可视化全过程。通过澳大利亚电力负荷与价格数据集,作者演示了如何处理数据、训练LSTM模型,并用该模型预测未来的电力负荷特征。预测过程中避免了信息泄露,确保了预测的准确性。
专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html
专栏内容
所有文章提供源代码、数据集、效果可视化
文章多次上领域内容榜、每日必看榜单、全站综合热榜
时间序列预测存在的问题
现有的大量方法没有真正的预测未来值,只是用历史数据做验证
利用时间序列分解算法存在信息泄露的问题:有人用emd+lstm对时间序列进行预测,是否存在原理上的问题? - 知乎
目录
912
3282
1819

被折叠的 条评论
为什么被折叠?