FSL-SCNN论文阅读笔记【待补充】

论文阅读笔记 同时被 2 个专栏收录
3 篇文章 0 订阅
5 篇文章 0 订阅

论文地址:Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in Industrial Cyber-Physical Systems

算法介绍:

FSL-SCNN是一种基于Siamese网络的应用于少样本的工业信息物理系统(CPS)中的少样本异常检测。

下图是算法框架图,其中左侧是工厂的CPS系统,用于提供数据样本,右侧是基于Siamese的FSL-SCNN算法,用于异常预测。

FSL-SCNN算法不直接预测输入样本数据的类别,而是根据优化的特征计算输入样本之间的距离,它构建了一个基于 CNN 的 Siamese 网络来解决少样本学习问题,因此即使仅使用少量样本数据也可以识别新类别。下图是详细的FSL-SCNN的算法结构图:

包括特征变换,特征编码和距离比较三个阶段,每个阶段都有先对应的损失计算公式,因此最终算法的损失函数包含三部分,每部分的实现情况见原论文:

特征变换:根据相对特征表示方案将原始数据 x 转换为 xi,也就是将工业信号转换成模型可操作的序列。

特征编码:CNN编码器,将输入的特征编码为嵌入特征。

距离比较:将输入的样本,分别 与选定的Anchor类,正类,负类样本 的嵌入特征进行欧式距离的比较,通过距离预测对应的类别。

数据集:

使用了在工业检测问题中的两个通用数据集Dnor和Dano,其中Dnor是正常样本集,Dano是异常样本集。

本文是通过假设Nnor>>Nano来描述少样本学习的,即正常样本的数量远大于异常样本的数量。

支持集:从Nano数据集选择的样本

查询集:未观察到的新类样本[个人理解是需要预测的样本]

在训练的每一个epoch中,都随机选择K类恶意攻击的样本,每类都包括C个样本。

训练过程:

优化器:SGD  lr=0.1 800次迭代

预测过程:

将需要预测的样本xi输入一个子网络,得到相应的特征f(xi)(文中称其为嵌入特征),然后将这个特征f(xi)与支持集中的一个样本xj的嵌入特征f(xj)进行比较, D操作表示计算两个嵌入特征的欧式距离,然后接一个全连接层,最后用Softmax层输出概率。

𝑃(𝑥𝑖 , 𝑥𝑗)代表待预测样本xi和支持集样本xj是同一个类别的概率。

将xi和支持集中的每一个样本都进行上述操作,得到多个概率,最大概率时xj所在的样本类别,就是xi的类别。

简单来说,就是xi应该和支持集中某个样本的欧式距离最小,xi和该样本属于同一类别。

实验结果:

  • 0
    点赞
  • 2
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 2 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

往往

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值