线代之几何重数&代数重数的理解(2)-矩阵指数的求解
前言
上一篇聊了一下特征值、特征向量的定义,这一篇来继续说约当标准型和几何重数代数重数的关系,以及矩阵指数如何求解
正文
如果想要求出矩阵指数,一般有三种方法
方法一
定义法
e A t = I + A t + 1 2 ! A 2 t 2 + ⋅ ⋅ ⋅ e^{At}=I+At+\frac{1}{2!}A^2t^2+··· eAt=I+At+2!1A2t2+⋅⋅⋅
百分之 99%的解题情况下没用,八股文除外
方法二
拉氏变换法
e A t = L − 1 [ ( s I − A ) − 1 ] e^{At} = L^{-1}[(sI-A)^{-1}] eAt=L−1[(sI−A)−1]
非常常用,几乎万能就是难算
方法三
将矩阵 A 化为对角标准型或约当标准型
-
如果对应的任意特征值的几何重数 = 代数重数
那么就选择对角标准型,否则就用约当标准型
对角标准型相信大家都很熟悉了e A t = P ( e λ 1 t 0 0 0 e λ 2 t 0 0 . . . e λ n t ) P − 1 e^{At}=P \begin{pmatrix} e^{\lambda_1t} & 0 &0 \\ 0 & e^{\lambda_2t} &0 \\ 0 & ... &e^{\lambda_nt} \end{pmatrix} P^{-1} eAt=P eλ1t000eλ2t...00eλnt P−1
其中
P 为特征子空间的 n 个线性无关的基向量的组合,其中 n 是矩阵 A 的阶数
-
如果对应的特征值,存在几何重数 ≠ \neq = 代数重数
那么就代表不能被化为对角标准型,必须化成约当标准型其实也很好理解,因为如果出现几何重数不等于代数重数的情况,也意味着代数重数大于几何重数,几何重数又等于特征子空间的基向量个数,它的 P 就会出现秩 < < <阶数的情况,也就是 n 个特征值只解出来小于 n 个的特征向量,也就自然不满足对角化的条件
对此,要对 A 矩阵进行约当标准型的转化,得求出特征向量与广义特征向量来组成变换矩阵 P
假设这里是三阶矩阵, λ 1 \lambda_1 λ1是 2 重根,P 分解为[p1,p2,p3],就列 2 个式子去解广义特征向量,即
( λ 1 I − A ) p 1 = 0 1 ◯ (\lambda_1I-A)p1=0 \space \normalsize{\textcircled{\scriptsize{1}}}\normalsize\enspace (λ1I−A)p1=0 1◯ ( λ 1 I − A ) p 2 = p 1 2 ◯ (\lambda_1I-A)p2=p1 \normalsize{\textcircled{\scriptsize{2}}}\normalsize\enspace (λ1I−A)p2=p12◯在式①中解出来的就是重根的特征向量,但是因为几何重数小于代数重数,解出来的特征向量只会有一个,所以要通过②式来求补充的广义特征向量p2,接着继续带入 λ 3 \lambda_3 λ3来解第三个特征向量,由于 λ 3 \lambda_3 λ3重根数为1,所以只会解出一个特征向量来
最后得到变换矩阵P=[p1,p2,p3]
e A t = P ( e λ 1 t t e λ 1 t 0 0 e λ 1 t 0 0 0 e λ 2 t ) P − 1 e^{At}=P \begin{pmatrix} e^{\lambda_1t} & te^{\lambda_1t} &0 \\ 0 & e^{\lambda_1t} &0 \\ 0 & 0 &e^{\lambda_2t} \end{pmatrix}P^{-1} eAt=P eλ1t00teλ1teλ1t000eλ2t P−1
一般形式有点难打,我就不打了,这里只拿特例形式举例子就行
在这里如果 λ 1 \lambda_1 λ1和 λ 2 \lambda_2 λ2是一样的,就要把他们看做一个特征值,只不过带有重根属性的特征值
我们再来观察变换后的约当块可以发现
变换后的每一个独特的特征值对应的约当块阶数 = 代数重数
解出几重根,对应的约当块就有几阶
总结
本篇阐述了关于几何重数、代数重数与约当块之间的联系,并通过对
e
A
t
e^{At}
eAt的第三种求法来引出如何在无法对角化的情况下进行约当对角化,并且对广义特征向量的求法做出了肤浅的阐明
关于
2023.2.14
作者:bigonion
邮箱:bigonion@bigonion.cn
NameSpace: bigonion.cn
Origin: bigonion.cn/blog
Powered by md.bigonion.cn
声明:未经本人同意,禁止转载、搬运、抄袭!