特征值篇(番外篇)——矩阵特征值几何重数和代数重数

本文介绍了线性代数中的核心概念,包括特征值的代数重数和几何重数的定义,以及它们在矩阵理论中的重要性。特征值的代数重数指的是在特征多项式中特征值的因子次数,而几何重数则是对应特征值的特征空间的维数。当两者相等时,特征值被称为半简单。文章还阐述了谱的定义,即一个矩阵的所有特征值集合,并指出谱在理解和分析线性算子性质中的作用。此外,文中引用了知名教材中的相关内容作为理论支撑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征值的代数重数定义

在这里插入图片描述
摘自 Linear Algebra and its applications David C. Lay Chapter 5.2, Page 276

特征值的几何重数定义

The geometric multiplicity of c c c is the dimension of the eigenspace of A A A associated with c c c.

摘自 The Linear Algebra a Beginning Graduate Student Ought to Know (Second Edition) Jonathan S. Golan
Chapter12, Page 244 ,有改动

semisimple eigenvalue 和 spectrum 定义

If these two multiplicities(geometric multiplicity & algebraic multiplicity) are equal, we say that c c c is a semisimple eigenvalue of A A A

The set of all eigenvalues of A A A is called the spectrum of α \alpha α and is denoted by s p e c ( A ) \mathit{spec(A)} spec(A)

摘自 The Linear Algebra a Beginning Graduate Student Ought to Know (Second Edition) Jonathan S. Golan
Chapter12, Page 244 ,有改动

定理

在这里插入图片描述
在这里插入图片描述
注:
在这里插入图片描述
摘自 《矩阵论教程》——张绍飞 Page 23

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值