特征多项式、代数重数与几何重数

概要

主要介绍了特征多项式、代数重数、几何重数以及重要的性质。
 


一个复方阵有多少个特征值?

首先要做的当然是给出定义啦!
1255644-20171018095055896-1649996660.png
接下来给出一个结论:
1255644-20171019211323162-2059940052.png
  证明:我们分三步加以说明,

  1. \(tI-A\) 行列式的计算展开表达式知,只有全取对角元素时,求和项次数才能达到 \(n\),即
    \begin{align}
    (t-a_{11})\cdots(t-a_{nn})=t^n-(a_{11}+\cdots+a_{nn})t^{n-1}+\cdots
    \label{eq1}
    \end{align}
    任何其它因子必包含非对角因子 \(-a_{ij}\,(i \neq j)\),则对角元素 \(t-a_{ii}\)\(t-a_{jj}\) 不可能也是因子。因此求和项次数不可能大于 \(n-2\),于是式 \ref{eq1} 确定了 \(t^n\)\(t^{n-1}\) 的系数。\(p_A(t)\) 的常系数项正好是 \(p_A(0)=\mathrm{det}(-A)=(-1)^n \mathrm{det} A\) .
  2. $p_A(\lambda)=0 \Leftrightarrow \mathrm{det}(\lambda I-A)=0 \Leftrightarrow (\lambda I-A)x=0, x\neq 0 \Leftrightarrow \lambda \in \sigma(A) $
  3. 一次数为 \(n\geqslant 1\) 的多项式至多有 \(n\) 个不同零点。

 
结论 \(1.1\) 告诉我们,结合推广的韦达定理知:\(p_A(t)\) 的零点之和是 \(A\) 的迹 \(tr(A)\),而零点之积则是 \(A\) 的行列式 \(\mathrm{det} A\)。进一步, 如果 \(p_A(t)\) 的每个零点的重数都是 \(1\)\(tr(A)\)\(A\) 的特征值之和,而 \(\mathrm{det} A\)\(A\) 的特征值之积 . 其实条件 “ 如果 \(p_A(t)\) 的每个零点的重数

  • 1
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值