Python学习——计算高维样本之间的距离

import numpy as np
def cal_pairwise_dist(x):
    """
    计算pairwise距离
    :param x: 矩阵matrix
    :return: 距离
    """
    sum_x = np.sum(np.square(x), 1)
    dist = np.add(np.add(-2 * np.dot(x, x.T), sum_x).T, sum_x)
    return dist

比如有5个样本,每个样本有3个属性,那么就能组成5*3的矩阵X:
示例:

X  = np.array([[1, 3, 6], [34, 21, 9], [13, 7, 24], [6, 31, 5], [33, 16, 32]])
dist = cal_pairwise_dist(X)
print(dist)

>>>[[   0 1422  484  810 1869]
	   [1422    0  862  900  555]
       [ 484  862    0  986  545]
       [ 810  900  986    0 1683]
       [1869  555  545 1683    0]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值