C++闲谈03——多线程
多进程
优点
- 每个进程相互独立 不影响主程序的稳定性 子进程崩溃了没关系
- 通过增加CPU 就可以扩充性能
- 可以尽量减少线程加锁解锁的影响
- 每个子进程都有3GB地址空间和相关资源,总体能够达到的性能上限非常大。
缺点
- 逻辑控制复杂,需要和主程序交互;
- 需要跨进程边界,如果有大数据量传送,就不太好,适合小数据量传送、密集运算 多进程调度开销比较大;
- 最好是多进程和多线程结合,即根据实际的需要,每个CPU开启一个子进程,这个子进程开启多线程可以为若干同类型的数据进行处理。当然你也可以利用多线程+多CPU+轮询方式来解决问题
- 方法和手段是多样的,关键是自己看起来实现方便有能够满足要求,代价也合适。
多线程
优点
- 无需跨进程边界;
- 程序逻辑和控制方式简单;
- 所有线程可以直接共享内存和变量等;
- 线程方式消耗的总资源比进程方式好。
缺点
- 每个线程与主程序共用地址空间,受限于2GB地址空间;
- 线程之间的同步和加锁控 制比较麻烦;
- 一个线程的崩溃可能影响到整个程序的稳定性;
- 到达一定的线程数程度后,即使再增加CPU也无法提高性能,例如Windows Server 2003,大约是1500个左右的线程数就快到极限了(线程堆栈设定为1M),如果设定线程堆栈为2M,还达不到1500个线程总数;
- 线程能够提高的总性能有限,而且线程多了之后,线程本身的调度也是一个麻烦事儿,需要消耗较多的CPU。
多线程和多进程的区别
线程是进程的子集,一个进程可能由多个线程组成。
多进程的数据是分开的、共享复杂,需要用到IPC通信,但是同步简单
多线程共享进程的数据,共享简单,但是同步复杂
C++11 ——thread
阻塞分离
join:Join 线程,调用该函数会阻塞当前线程,直到由 *this 所标示的线程执行完毕 join 才返回。
detach: Detach 线程。 将当前线程对象所代表的执行实例与该线程对象分离,不会阻塞当前线程,使得线程的执行可以单独进行。一旦线程执行完毕,它所分配的资源将会被释放。
锁
- lock_guard 类似于智能指针里的scoped_ptr
lock_guard 通常用来管理一个 std::mutex 类型的对象,通过定义一个 lock_guard 一个对象来管理 std::mutex 的上锁和解锁。在 lock_guard 初始化的时候进行上锁,然后在 lock_guard 析构的时候进行解锁。这样避免了人为的对 std::mutex 的上锁和解锁的管理。
定义如下:
template class lock_guard;
它的特点如下:
(1) 创建即加锁,作用域结束自动析构并解锁,无需手工解锁
(2) 不能中途解锁,必须等作用域结束才解锁
(3) 不能复制
注意:
lock_guard 并不管理 std::mutex 对象的声明周期,也就是说在使用 lock_guard 的过程中,如果 std::mutex 的对象被释放了,那么在 lock_guard 析构的时候进行解锁就会出现空指针错误。
- unique_lock
简单地讲,unique_lock 是 lock_guard 的升级加强版,它具有 lock_guard 的所有功能,同时又具有其他很多方法,使用起来更强灵活方便,能够应对更复杂的锁定需要。
特点如下:
创建时可以不锁定(通过指定第二个参数为 std::defer_lock),而在需要时再锁定
可以随时加锁解锁
作用域规则同 lock_grard,析构时自动释放锁
不可复制,可移动
条件变量需要该类型的锁作为参数(此时必须使用 unique_lock)
生产者消费者模型
单生产者单消费者模型
#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue> // C++ STL所有的容器都不是线程安全
using namespace std;
/*
C++多线程编程 - 线程间的同步通信机制
多线程编程两个问题:
1.线程间的互斥
竟态条件 =》 临界区代码段 =》 保证原子操作 =》互斥锁mutex 轻量级的无锁实现CAS
strace ./a.out mutex => pthread_mutex_t
2.线程间的同步通信
生产者,消费者线程模型
*/
std::mutex mtx; // 定义互斥锁,做线程间的互斥操作
std::condition_variable cv; // 定义条件变量,做线程间的同步通信操作
// 生产者生产一个物品,通知消费者消费一个;消费完了,消费者再通知生产者继续生产物品
class Queue // 对queue重新封装一下
{
public:
void put(int val) // 生产物品
{
//lock_guard<std::mutex> guard(mtx); // scoped_ptr 不能同时使用两把锁
unique_lock<std::mutex> lck(mtx); // unique_ptr
while (!que.empty())
{
// que不为空,生产者应该通知消费者去消费,消费完了,再继续生产
// 生产者线程进入#1等待状态(阻塞状态),并且#2把mtx互斥锁释放掉 消费者线程就能抢到这把锁 不释放锁 无法消费
cv.wait(lck); // lck.lock() lck.unlock
}
que.push(val);
/*
notify_one:通知另外的一个线程的
notify_all:通知其它所有线程的
通知其它所有的线程,我生产了一个物品,你们赶紧消费吧
其它线程得到该通知,就会从等待状态 =》 阻塞状态 =》 获取互斥锁才能继续执行
*/
cv.notify_all();
cout << "生产者 生产:" << val << "号物品" << endl;
}
int get() // 消费物品
{
//lock_guard<std::mutex> guard(mtx); // scoped_ptr
unique_lock<std::mutex> lck(mtx); // unique_ptr
while (que.empty())
{
// 消费者线程发现que是空的,通知生产者线程先生产物品
// #1 进入等待状态 # 把互斥锁mutex释放
cv.wait(lck);
}
int val = que.front();
que.pop();
cv.notify_all(); // 通知其它线程我消费完了,赶紧生产吧
cout << "消费者 消费:" << val << "号物品" << endl;
return val;
}
private:
queue<int> que;
};
void producer(Queue *que) // 生产者线程 生产10个物品
{
for (int i = 1; i <= 10; ++i)
{
que->put(i);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
void consumer(Queue *que) // 消费者线程
{
for (int i = 1; i <= 10; ++i)
{
que->get();
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
int main()
{
Queue que; // 两个线程共享的队列
std::thread t1(producer, &que);
std::thread t2(consumer, &que);
t1.join(); // 主线程等到两个子线程执行完 继续执行
t2.join();
system("pause");
return 0;
}
/*
线程间互斥 : 临界区 原子类型 互斥锁 信号量
线程间同步 : 条件变量 信号量
*/
多生产者多消费者
#include <iostream>
#include <mutex>
#include <condition_variable>
#include <queue>
#include <list>
using namespace std;
class Queue
{
public:
Queue() :pro_counter(1) {}
void put(int val)
{
// lock_guard<mutex> lock(mtx);
unique_lock<mutex> lck(mtx);
while (!que.empty())
{
// que不为空,生产者应该通知消费之去消费,
// 使用条件变量,当不为空,就将锁释放掉,
cv_no_full.wait(lck);
}
que.push(val);
cv_no_empty.notify_all(); // 通知所有的消费线程去消费
// cv.notify_one(); // 通知一个线程
// 其他线程得到该通知,就从等待状态,编程
// 阻塞状态,然后在获取互斥锁继续执行。
}
int get()
{
int val = 0;
{
unique_lock<mutex> lck(mtx);
while (que.empty())
{
// 通知生产者生产,
// 进入等待状态,释放互斥锁
cv_no_empty.wait(lck);
}
val = que.front();
que.pop();
cv_no_full.notify_all(); // 通知消费线程,我消费完了,赶紧生产吧
}
return val;
}
mutex producer_mtx; // 互斥生产者之间获取队列
mutex comsumer_mtx; // 互斥消费者之间获取队列
int pro_counter; // 记录生产者已生产物品的个数
int con_counter; // 记录消费者已消费物品的个数
const int MAX_PRODUCER = 10; // 最多生产的个数
private:
queue<int> que; // 共享队列
mutex mtx; // 互斥生产者和消费者获取队列
condition_variable cv_no_full; // 用于共享队列不满
condition_variable cv_no_empty; // 用于共享队列不空
};
Queue que;
void consumer(Queue *que)
{
int flag = false;
for (;;)
{
this_thread::sleep_for(chrono::milliseconds(100));
{
lock_guard<mutex> lck(que->comsumer_mtx);
if (que->con_counter < que->MAX_PRODUCER)
{
int data = que->get();
++que->con_counter;
cout << this_thread::get_id() << "消费 : " << data << "商品" << endl;
}
else
flag = true;
}
if (flag)
break;
}
}
void producer(Queue *que)
{
int flag(false);
for(;;)
{
{
lock_guard<mutex> lck(que->producer_mtx);
if (que->pro_counter <= que->MAX_PRODUCER)
{
que->put(que->pro_counter);
cout << this_thread::get_id() << "生产 : "<< que->pro_counter << "商品" << endl;
++que->pro_counter;
}
else
flag = true;
}
if (flag)
break;
this_thread::sleep_for(chrono::milliseconds(100));
}
}
int main()
{
list<thread> pro_lst; // 生产者线程
for (int i = 0; i < 3; ++i)
pro_lst.push_back(thread(producer, &que));
list<thread> con_lst; // 消费者线程
for (int i = 0; i < 3; ++i)
pro_lst.push_back(thread(consumer, &que));
for (auto &it : pro_lst) // 注意这里只能使用引用&it,因为thread是没有左值的提供拷贝构造和赋值
it.join();
for (auto &it : con_lst)
it.join();
return 0;
}
atomic底层实现
CAS操作是一条CPU的原子指令
CAS(addr, old, new)
将addr存放的只与old比较,如果等于old,则将new赋值给addr
//输入一个pAddr的地址,在函数内部判断其的值是否与期望值nExpected相等
//如果相等那么就将pAddr的值改为nNew并同时返回true;否则就返回false,什么都不做
bool compare_and_swap(int *pAddr, int nExpected, int nNew)
{
if(*pAddr == nExpected)
{
*pAddr = nNew;
return true;
}
else
return false;
}
用预期值A1和内存值A2做对比,如果A1等于A2,则内存值修改成B并返回true,
否则不操作并返回false。