2021-基于人工智能视频监控序列的校园暴力检测Campus Violence Detection

本文介绍了一种基于人工智能的校园暴力检测方法,结合视频和音频信息。通过预处理、特征提取和分类器设计,利用C3D神经网络和MFCC特征。在经典D-S融合算法基础上进行改进,解决证据冲突问题,提高识别准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Campus Violence Detection Based on Artificial Intelligent Interpretation of Surveillance Video Sequences
本文作者分别对视频和音频进行了检测,分别得出一个概率(暴力或非暴力),作者定义的分类标准:当视频和音频同时判断为暴力时,则这个场景就是暴力场景;当视频=暴力,音频=非暴力,则定义为体育竞技或玩游戏,为非暴力场景;当视频=非暴力,音频=暴力,定义为批评,为非暴力场景;当视频=音频=非暴力时,则该场景定义为非暴力场景,只有第一个是负面的,其余均为正面。为了使融合后的结果符合该分类,作者改进了DS融合理论。DS融合理论:起到了不同数据源数据融合的作用。一个例子如下图:
在这里插入图片描述
通过DS融合的计算,可以得到A作案的可能性最大,但是该DS融合理论在本文中并不符合作者的分类并且存在一定的局限性,于是作者进行了改进。

预处理

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值